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Double Attention-based Multimodal Neural Machine
Translation with Semantic Image Region

Yuting Zhao1,a) Mamoru Komachi1,b) Tomoyuki Kajiwara2,c) Chenhui Chu2,d)

Abstract: Current work on multimodal neural machine translation (MNMT) has mostly paid attention to the effect of
combining visual and textual modalities in improving translation performance. However, it has been suggested that the
visual modality is only marginally beneficial. As conventional visual attention mechanisms are used to select visual
features from grids of equal size in an image generated by convolutional neural net, the feature of a grid that is not
related to image content may arise limited effects in aligning visual concepts associated with the textual object. In
contrast, we propose to apply semantic image regions for MNMT with integrating visual and textual features by means
of two separate attention mechanisms (double attention) in order to improve predictive token generation. Our approach
on the Multi30k dataset achieves 0.5 and 0.9 BLEU point improvement on English–German and English–French trans-
lation tasks compared with the baseline double attention-based MNMT.
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1. Introduction
In recent years, significant amount of research has paid more

attention to the joint modeling of natural language processing
(NLP) and computer vision. There appeared a lot of shared task
such as image caption generation [1–5], visual question answer-
ing [6–8] as well as Multimodal Machine Translation (MMT)
[9–12] that takes image into account as the auxiliary inputs. In
the first MMT published in [13], a full image is used to support
a translation task. It became popular to heuristically integrating
two modalities such as text and image into machine translation.
Consequently, more research has been conducted to show that vi-
sual attributes would assist the neural network to generate better
and more accurate translations. In [12], they put a feature vector
extracted from a whole image into an encoder hidden state fol-
lowed by text sequence, and use attention focusing on each part
in the encoding phase. In addition, Calixto and Liu [9] propose
to represnet a whole image as a word in the head or tail of source
sentence or to use the whole image to initialize the encoder or de-
coder hidden state as an input to improve attention-based Neural
Machine Translation (NMT) performance. Furthermore, the idea
of combining image preprocessing with attention mechanisms is
also emerging. As in [11], image is first preprocessed into grid
by CNN, and then visual features and text annotation are used to-
gether to compute multimodal context vector with a multimodal
attention mechanism. Subsequently, an improved model is pro-
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posed in [10], in which they publish the concept of two separated
attention mechanisms. Similarly, they also preprocessed the im-
age into feature vectors in grid units. Different from their pre-
vious work, their two attention mechanisms work on image fea-
tures and text annotation, respectively. Their research has made
steady improvement by using image features in machine transla-
tion, while the full potential of the image feature contributing to
machine translation still needs to be more deeply explored.

In this paper, we combine attention mechanism and object de-
tection to take full advantage of image features in NMT. Firstly,
we refine the image feature extraction compared with previous
work. We take advantage of the bottom-up attention model [14]
which is updated from Faster R-CNN [15] as an object detec-
tion model. Thanks to this model, the instances of objects can
be identified and be localized with bounding boxes. We use it to
enhance the image preprocessing; instead of obtaining a grid fea-
ture, we acquire the object-level semantic image region feature.
Secondly, in order to make full use of the extracted semantic im-
age region, we utilize an additional image-attention mechanism
to the decoder to assist generating the target word. In this way,
the prediction can be generated from not only source text but also
from the semantic image region.

Our main contributions are:
• We propose semantic image regions, which are attended

from one attentional mechanism in double attention-based
NMT to maximize the use of visual feature, so as to make an
improvement of adequacy on translation effect.

• We demonstrate the impact of introducing the semantic im-
age region to the attention-based NMT and double attention-
based Multimodal NMT (MNMT).

• We discuss the effect of the semantic image region acting on
the actual translation examples.
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2. Related Work
2.1 Attention mechanism

The concept of attention was first put forward in [16]. Their
motivation comes from the mechanism of human attention. When
people look at an image, they do not actually look at every pixel of
the whole image at one time but focus their attention on specific
parts according to their needs. Based on this idea, they propose a
framework for attention-based task-driven visual processing with
neural networks.

In the field of machine translation, after the emergence of tradi-
tional encoder decoder NMT, the first attention-based mechanism
comes from [17]. Their motivation is that learning to align and
translate the source word and the current predicted word jointly
according to calculated attention weight via attention mechanism.

On the application of image captioning, Xu et al. [2] introduce
the attention mechanism for the first time. The attention mech-
anism is extended into soft attention and hard attention in this
paper. For soft attention, it is the initial attention method similar
to [17], but it applied the attention over the convolutional image
features extracted from VGG. For hard attention, it does not gen-
erate weights for all features but only focused on one position at
one time.

2.2 Multimodal NMT
In [11], they improve Multimodal NMT (MNMT) with a mul-

timodal attention mechanism. It is designed to integrate two
modality-specific context vectors from the textual annotation vec-
tor and visual annotation vectors by the multimodal attention
mechanism. They extract visual feature from ResNet-50 CNN,
and compute a multimodal context vector by a non-linearity func-
tion acting on two modalities. At last, they calculate the current
decoder hidden state considering the multimodal context vector
and previous hidden state.

On the other hand, in [10], they improve MNMT with two
separated attention mechanisms. They compute two modality-
specific context vectors independently by two separated attention
mechanisms. One is used for source text and the other one is used
for visual vectors extracted by ResNet-50 CNN. Then, they gen-
erate the current decoder hidden state considering both modality-
specific context vectors.

Furthermore, in [18], they propose to re-implement trans-
former NMT architecture with a multimodal settings. Then they
extract image features by a couple of different ways, includ-
ing CNN-based, scene-type, action-type and boject-type. They
make an improvement from incorporating multimodal informa-
tion, while showing that the effect of the visual features in their
system is small.

2.3 Image region
In [12], they propose to integrate multimodal information (text

and regional features) into the attention-based NMT. For extract-
ing regional features, they use the region-based convolutional
neural networks (R-CNN) [19]. They take only top 4 regional
objects arranging in ascending order of size, and then combine
them together with global image feature to obtain a new visual

sequence. They put the new visual sequence followed by the text
sequence. Avoiding dimension mismatch and the inherent differ-
ence in content between the visual and textual vectors, they use a
transformation matrix to learn the mapping. Then, they calculate
the attention weights of all the possible hidden states in the final
sequence. Considering the length of the encoding phrase (visual
sequence plus text sequence), they just make the visual sequence
from 4 regional features.

In [14], they propose a bottom-up and top-down attention
model for image captioning and visual question answering. The
task of the bottom-up attention model is to acquire the image re-
gion of interest to extract image features, and the top-down atten-
tion model is used to learn to adjust the feature weights, realizing
the time attention of the image content, and generating the de-
scription word by word. It is worth noting that the bottom-up
attention model enables attention to be calculated at the level of
objects and other salient image regions.

3. Methodology
As illustrated in Figure 1, the overall double attention-based

MNMT model consists of three parts: source-text side, source-
image side and decoder side. We address the problem of learning
to generate target words by means of concentrating on seman-
tic image regions instead of the coarse grids in terms of image-
attention mechanism. From a source sequence χ = (χ1, χ2, χ3,
· · · , χn) to its target sequence τ = (τ1, τ2, τ3, · · · , τm), the image-
attention mechanism concentrates on all the semantic image re-
gion features so as to calculate image context vector zt, which is
passed into the decoder layer together with the text context vector
ct to assist prediction. We consider that the more clearly the im-
age region can express the semantic features of the source word,
the more valuable information can be provided for the translation
process from the source word to the target word, and the more
accurate the word generation can be.

3.1 Source-text side
This is a common part both in the attentive NMT and MNMT.

There are a bi-directional RNN encoder and a soft attention mech-
anism. Given a source sequence χ = (χ1, χ2, χ3, · · · , χn), the
model updates forward RNN hidden states via reading χ from left
to right, and generates forward annotation vectors (−→υ1, −→υ2, −→υ3, · · · ,
−→υn), as well as reversely updating backward RNN with annotation
vectors (←−υ1,←−υ2,←−υ3, · · · ,←−υn). Concatenating forward and backward
vectors υi = [−→υi ;←−υi]T, every υi encodes the whole sentence with
a focus on the i-th word. At each time step t, text context vector
ct is computed based on annotation vectors V = (υ1, υ2, . . . , υn),
and the decoder previous hidden state st−1:

etext
t,i = A(st−1,Vi) (1)

αt,i =
exp(etext

t,i )∑n
k=1 exp(etext

t,k )
(2)

ct =

n∑
i=1

αt,i ∗ Vi (3)

where A is presented an attention model.
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Fig. 1: The model of double attention-based MNMT with semantic image regions.

(a) Grid. (b) Image regions.

Fig. 2: Comparing between the coarse grid (a) and semantic im-
age regions (b).

3.2 Source-image side
In this part, through the image-attention mechanism, the se-

mantic image regions are integrated into the MNMT model.
3.2.1 Semantic image region extraction

As illustrated in Figure 2, instead of extracting grid feature in
a uniform size, we consider extracting a feature which is related
to an object-level meaning by means of a bounding box as shown
in the picture. Therefore, we put forward the concept of inte-
grating semantic image region, extracted 100 bounding box with
object-level information from the image to make them to be paid
attention to by the image-attention mechanism.

In this work, we employed the Faster R-CNN [15] in con-
junction with the ResNet-101 [20] CNN and trained by Visual
Genome [21] data. We use it to extract 100 bounding box fea-
tures from each image in the Multi30k dataset. Each feature is
generated by a vector with size of 2048×1, and marked as Λ =

(a1, a2, a3, · · · , a100).
3.2.2 Image-attention mechanism

This part is an extension of the text-attention mechanism,
which concentrates on 100 semantic image region feature vec-

tors at each time step. The attention distribution of input image
regions corresponding to each token generated by the target sen-
tence can be understood as the probability of alignment between
the input image region and the target token.

We apply the “soft” attention [2] considering image region fea-
ture ai in Λ = (a1, a2, a3, · · · , a100), the previously generated
target word τt−1 and previous hidden state st−1. A hidden state
proposal s̃t is computed as follows:

s̃t = f (st−1, τt−1) (4)

We then project it to get the attention energy et,i, which is an at-
tention model that scores the degree of output matching between
the inputs around position i and the output at position t:

et,i = VT
a ∗ tanh (Ua s̃t + Waai) (5)

where Va, Ua and Wa are model parameters.
Then the weight matrix wt,i of each ai is computed:

wt,i = softmax(et,i)

=
exp(et,i)∑100

k=1 exp(et,k)

(6)

At each time step, the image-attention mechanism dynamically
selects the image region feature that is most relevant for predict-
ing the current target word. The result is an image context vector
zt:

zt = βt ∗

100∑
i=1

wt,i ∗ ai (7)
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Among zt, the βt ∈ [0, 1] following [2] is used to adjust the propor-
tion of the image context vector in GRU (relative to the proportion
of st−1, τt−1):

βt = σ( fβ(st−1)) (8)

3.3 Decoder side
The decoder is a conditional GRU. Its initial hidden state re-

sults from a projection of the encoder final vector. The new hid-
den state st employing GRU gated hidden units is computed by
the hidden state proposal s̃t, the time-dependent text context vec-
tor ct and image context vector zt:

st = (1 − ξt) � s̄t + ξt � s̃t (9)

in which s̄t is the proposed updated hidden state:

s̄t = tanh (Ctext ∗ ct + Cimg ∗ zt + γt � (U ∗ s̃t)) (10)

where � is an element-wise multiplication, Ctext, Cimg and U are
model parameters, and ξt and γt is the output of update / reset
gates:

ξt = σ(Ctext
ξ ct + Cimg

ξ zt + Uξ s̃t) (11)

γt = σ(Ctext
γ ct + Cimg

γ zt + Uγ s̃t) (12)

Finally, each conditional probability of generating target to-
ken τt is computed by g which is a nonlinear, potentially multi-
layered, function:

p(τt |τ1, . . . , τt−1,V,Λ) = g(st, τt−1, ct, zt) (13)

4. Experiments
4.1 Data set

In this work , we conduct experiments on the
English→German (EN→DE) and English→French (EN→FR)
data from Multi30k dataset [22], which is an extension of the
Flickr30K dataset [23]. It is a dataset that contains 30k training,
1014 validation and 1k test images respectively, and each image
paired with image descriptions contains both original English
and translated sentences in multiple languages.

For preprocessing, we lowercase and tokenize English, Ger-
man and French descriptions with the scripts in Moses SMT
Toolkit [24]. We convert space-separated tokens into subword
units via byte pair encoding (BPE) model [25]. We limit the
number of tokens in a description to a maximum of 80. We train
model to translate from English to German and English to French
tasks. We use entire training set for training , its validation set
for model selection and its 2016’s test set to report evaluation of
cased, tokenized sentences with punctuation.

4.2 Baseline Approaches for comparisons
4.2.1 Attentive NMT

We train a text-only attentive NMT model using OpenNMT
[26] as our baseline. We train it on EN→DE and EN→FR in

which only the textual part of Multi30k is used for training. It
is consisted of a 2-layer bidirectional GRU encoder and a 2-layer
conditional GRU decoder. The function of attention mechanism
is to allow the decoder to attend to different parts of the source
sentence at each time step of the output prediction.
4.2.2 Doubly-attentive MNMT

In addition, we train a doubly-attentive MNMT model [10]
as another baseline, in which text and image have been inte-
grated into the model by means of two attention mechanisms,
respectively. On the source-text side, it has the same attention
mechanism as the one used in the OpenNMT model. On the
source-image side, however, attention mechanism acts on im-
age features which are encoded by pre-trained convolutional neu-
ral net (CNN). For image feature extraction, we encode images
with three pre-trained CNN methods: VGG-19, ResNet-50, and
ResNet-101, respectively. We use the authors’ implementation on
the GitHub *1 to keep the settings consistent.

4.3 Implementation Details
4.3.1 Feature

We extract image regions from bottom-up attention model [14],
which is based on the training of Faster R-CNN [15] with ResNet-
101, using Visual Genome [21] data. We obtain output features
corresponding to salient image regions, which contain bound-
ing box feature vectors and horizontal and vertical coordinates
of each bounding box on an image. We set 100 bounding box on
a image and a bounding box feature vector with a size of 2048×1.
4.3.2 Learning

We change doubly-attentive MNMT model to make it appli-
cable to act on our image regions. On the source-text side, we
keep the settings consistent. On the image-source side, we ad-
just image attention mechanism to attend to image regions of
size 1×100×2048 at each time step. Then, 2-layer conditional
GRU decoder is conditioned on the previous hidden state from
the first layer of decoder, the previously emitted token, the source
context vector and image region context vector. The settings of
other parts and parameters are consistent with the basic doubly-
attentive MNMT model, in which setting we use batch size of 40,
text dropout with a probability of 0.3 and image region dropout
with 0.5, as well as we train the model using stochastic gradient
descent with ADADELTA [27] with a learning rate of 0.002. We
select the model by analyzing the learning curve via calculating
validation perplexity and validation accuracy. We stop learning
when the values of both metrics are stable; in this work, it is set
to run till 25 iterations.
4.3.3 Evaluation

We evaluate translation quality in terms of BLEU [28] and ME-
TEOR [29]. We train all the models (baseline and our proposal)
three times and calculate BLEU score and METEOR score, based
on which we report the mean and standard deviation over three
runs. Furthermore, we report statistical significance with boot-
strap resampling by [30] using the merger of three test translation
results. We define the threshold for statistical significance test as
0.05 and report if the p-value is less than the threshold or not.

*1 https://github.com/iacercalixto/MultimodalNMT
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EN→DE EN→FR

Model BLEU METEOR BLEU METEOR

Attentive NMT + (text-only) 34.7±0.3 53.2±0.4 56.6±0.1 72.1±0.1

Doubly-attentive MNMT + (VGG-19) 36.4±0.2 55.0±0.1 57.4±0.4 72.4±0.4
Doubly-attentive MNMT + (ResNet-50) 36.5±0.2 54.9±0.4 57.5±0.4 72.6±0.4
Doubly-attentive MNMT + (ResNet-101) 36.5±0.3 54.9±0.3 57.3±0.2 72.4±0.2

Doubly-attentive MNMT 37.0±0.1 (↑ 0.5) 55.3±0.2 (↑ 0.4) 73.2±0.2 (↑ 0.9)58.2±0.5 (↑ 0.8)
+ (Semantic Image Regions) (p-value < 0.05)

Table 1: BLEU and METEOR scores for different models on the 2016’s EN→DE and EN→FR test set of Multi30k. All scores are
averages of three runs. We present the results using the mean and the standard deviation.

Source (En) a man in a blue coat grabbing a young boy’s shoulder .
Reference (Fr) un homme en manteau bleu saisissant l’paule d’un jeune garon .

Attentive NMT (Fr) un homme en manteau bleu se baladant avec l’paule d’un jeune garon .
Attentive MNMT (Fr) un homme en manteau bleu agrippe l’paule d’un jeune garon .

Our proposal (Fr) un homme en manteau bleu agrippant l’paule d’un jeune garon .

Table 2: Comparison of translation performance generated by our proposal and baselines.

5. Results
In Table 1, we show results for attentive NMT and MNMT

baselines as well as our proposal on translating from EN→DE
and EN→FR. We note that our proposal performs consistently
better than the strong attentive NMT and MNMT baselines in
both directions, moreover in both evaluation methods.

Comparing with attentive NMT baseline, our proposal im-
proves 2.3 BLEU scores and 2.1 METEOR scores in EN→DE, as
well as an improvement of 1.6 BLEU scores and 1.1 METEOR
scores in EN→FR.

Comparing with attentive MNMT with ResNet-101 baseline,
our proposal improves 0.5 BLEU scores and 0.4 METEOR scores
in EN→DE. On the other hand, there is an improvement of 0.9
BLEU scores and 0.8 METEOR scores in EN→FR, moreover,
results are significantly better than the baseline with p-value <
0.05.

6. Qualitative Analysis
In order to intuitively evaluate the influence of semantic im-

age region acting on doubly-attentive MNMT, we choose exam-
ples from EN→FR task randomly and conduct qualitative analy-
sis from three aspects:
• Comparative observation of translations. As shown in Ta-

ble 2, we compare the translation results generated by at-
tentive NMT, doubly-attentive MNMT with ResNet-101 and
doubly-attentive MNMT with semantic image regions. The
names of these three models are abbreviated as “Attentive
NMT,” “Attentive MNMT” and “Our proposal” in the fol-
lowing tables.

• Visualization of the semantic image region and target
word attention. As shown in Figure 4, at each time step,
the semantic image region is shown in deep or shallow trans-
parency on the image according to the attention weight as-
signed to it. The larger the weight, the more clearly it ap-
pears on the image. Considering a large number of 100
bounding boxes and overlapping areas, we visualize the five

Fig. 3: Source–Target (EN→FR) word attention visualization
corresponding to Table 2.

most weighted bounding boxes. The most weighted image
region are marked with blue lines, and the target token gen-
erated at that time step are marked with red text along with
the bounding box.

• Visualization of the source and target word attention.
Figure 3 is the visualization of the attention weights from the
original English tokens to the translation tokens (French), re-
spectively. Each pixel shows the weight of the matching re-
lation of source token and corresponded target token. The
larger the weight, the brighter the corresponding pixel (0:
black, 1: white).
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(a) “agrippant”→ “grabbing”.

(b) “ l’ ”→ “the/a”. (c) “paule”→ “shoulder”. (d) Source image.

Fig. 4: Image–Target attention visualization corresponding to Table 2.

6.1 Contribution of semantic image region
As in the example of Table 2, we list source English sentence,

French reference and French translations from three methods. In
this example, translation is broken down into two subtasks: trans-
late “grab” into French, and then transform it into the present
participle. Verbs in French have many surface forms in the con-
text according to different tenses, such as present simple, future,
past, and others. Moreover, polysemy is ubiquitous. It is difficult
to translate the verb into the exact meaning and form from the
context only. Concentrating on the semantic image region during
translation improved this deficiency.

By analyzing source and target token attention shown in Figure
3, it can be seen that the bright spots exactly represent the highest
match degree between the source and generated tokens.

By comparing in Table 2, it can be obviously found that in the
translation of the verb, our proposal gives better translation than
both baselines. In the text-only attentive NMT, the word “grab-
bing” is not translated correctly. Its translation into English is “a
man in a blue coat strolling with the shoulder of a young boy,”
which is different from the source sentence. On the other hand,
in the doubly-attentive MNMT with grid image information from
ResNet-101 CNN, only one of the two points was broken. It suc-
cessfully translates “grab” into “agrippe,” but fails to transform it
into the present participle form. It does not catch the state of the
verb. By contrast, our approach improves the translation perfor-
mance benefited from the advantage of semantic image regions.
We improve the translation of “grabbing” from “se baladant avec”
to “agrippant,” both in meaning and verb deformation.

In this part, in accordance with Figure 4, we evaluate what se-
mantic image regions actually contribute. We visualize the time
step of generating tokens of “agrippant” as well as its neighbor
time step in context. Along with the generation of “agrippant,”
the semantic image regions lock onto the area of the image where
the action is being performed, capturing the state of the action at

the moment. Coordinately, the image-attention mechanism con-
centrates on the most weighted image region which is loaded with
description feature, so as to affect the output token of the decoder.

To analyze this improvement quantitatively, we specifically ex-
tracted 20 source sentences which have present participle as ac-
companying adverbial. The results show that: the accuracy of
translation into correct verb form in attentive NMT is 60% and
that of doubly attentive MNMT is 65%, in contrast, our accuracy
reaches 90%.

7. Conclusion
Image feature plays a positive role on machine translation and

improves the accuracy of translation. Our main idea is to maxi-
mize the influence of semantic image features in NMT. Our pro-
posal is a model that coalesces semantic image region and double
attention to generate more vivid translation. By comparing with
baselines, we achieve improvement benefited from semantic im-
age regions. In the future, we will continue to explore what image
features are more conducive to the translation process, and how
to better integrate them.
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