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WRIME-MT：
日英・日中ソーシャルメディア対訳データセットの構築

東山 翔平1,a) 梶原 智之2,b) 内山 将夫1,c)

概要：自然言語処理・機械翻訳において，ユーザ生成テキストは，逸脱的現象への対処が課題となる難し
いドメインの 1 つである．本研究では，日本語ユーザ生成テキストの機械翻訳タスクと，同タスクにお
ける逸脱的表記のテキスト正規化に焦点を当て，評価用対訳データセットWRIME-MTの構築を行った．
WRIME-MTは，日本語ソーシャルメディア投稿の原文テキストに，英語訳・中国語訳と，逸脱的表記の
正規化情報や固有名などの言語情報が付与されたデータセットであり，日本語ユーザ生成テキストの機械
翻訳評価において既存データセットを補完する位置づけとなる．本データセットを用いて，多言語および
日本語中心の翻訳特化モデル・汎用言語モデルの翻訳精度評価を行い，最先端の自動正規化モデルによる
正規化適用について一定の有効性を確認した．

1. はじめに
ソーシャルメディア，レビューサイト，電子掲示板など

に投稿されるユーザ生成テキスト（UGT）は，個人や消費
者の発言・意見についての貴重な情報源である．機械翻訳
では，2010年代以降，UGTに焦点を当てたシェアドタス
ク [1–5]が開催されるなど，重要なドメインの一つとして
注目を集め，研究が進められてきた．

UGTに特異な言語現象として，口語的表現，省略，ネッ
トスラング，絵文字，誤記など，書き手による逸脱した言
語使用（自然言語処理では「ノイズ」とも呼ばれる）があ
る．UGTドメインに特化した注釈付きコーパスは通常限
られており，こうした言語現象に対処することは，UGTを
対象とする自然言語処理における共通の課題と言える．機
械翻訳においても，大規模なドメイン内対訳テキストがな
いことから，逸脱的現象を含む UGTに十分に適応したモ
デルを構築することは容易ではない．そのため，逸脱的現
象に起因する誤訳や，翻訳品質の低下が問題となる [6, 7]．
この問題に対する既存研究の取り組みとして，「ノイズ

を除去する」方法や，「（学習時に）ノイズを加える」方法
が用いられてきた．前者の「ノイズを除去する」方法には，
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テキスト正規化 [8]がある．これは，逸脱的現象のうち特
に表記揺れとみなせる現象（以降，「逸脱的表記」と呼ぶ）
に焦点を当て，テキストを規範的・標準的な表記に変換し
てから機械翻訳モデルに入力することで，ノイズを含まな
いテキストと同等の翻訳品質を達成することを目指すもの
である [9–11]．後者の「ノイズを加える」方法では，モデ
ル学習用の疑似対訳を生成する．目標言語のドメイン内単
言語テキストを逆翻訳したり，クリーンな対訳テキストに
人工的なノイズを注入するといった方法により，ドメイン
内の大規模な疑似対訳を作成し，ノイズに頑健な機械翻訳
モデルの学習を行う [7, 12,13]．
本研究の焦点は二つある．一点目は，日本語を原言語と

する UGT機械翻訳における機械翻訳モデルの性能を評価
することであり，二点目は，逸脱的表記への対処方法とし
てテキスト正規化の有効性を検証することである．
一点目に関して，日本語を含む言語方向についてのUGT

対訳データセットには，MTNT [14]や PheMT [15]がある
ものの，日本語 UGTを対象とした機械翻訳研究の推進・
発展のためには，多様なベンチマークデータセットが利用
できることが望ましい．MTNTは，英語↔日本語方向を
含む Reddit投稿の学習・評価用対訳データセットであり，
PheMTは，MTNTの日本語→英語対訳を高品質な事例
にフィルタリングし，さらに 4種類の言語現象の種別と正
規化情報を付与した評価用対訳データセットである．本研
究では，日本語ソーシャルメディア投稿に，逸脱的表記の
正規化情報や固有名などの言語情報を付与し，さらに英語
および中国語の翻訳を作成することで，2言語方向の評価用
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Dataset Data Source Lang pair Train+Dev size Test size

MTNT [14] Reddit en↔fr, en↔ja 17.3k–85.8k 1,002–1,022

WMT19 Reddit Test Set [1] Reddit en↔fr, en↔ja – 1,111–1,401

WMT20 Reddit Test Set [2] Reddit en↔ja – 997–1,376

WMT20 Wiki. Comments Test Set [2] Wikipedia en→{de, ja} – 1,098–1,100

PheMT [15] Reddit ja→en – 1,566

PFSMB [10] Social media fr→en – 1,554

PMUMT [16] Social media fr→en – 400

MMTC [17] Twitter
{ar, de, es, fa, fr, hi, ko,

ps, pt, ru, tl, ur, zh}→en
0–59,247 901–3,000

RoCS-MT (WMT23) [4, 18] Reddit en→{cs, de, fr, ru, uk} – 1,922

WRIME-MT Twitter ja→{en, zh} – 769

表 1 主な UGT 対訳データセット．サイズは文数または投稿数．

対訳データセットWRIME-MTを構築した．WRIME-MT

は，PheMTと同様に言語現象に注目した詳細評価が可能
なデータセットであり，ドメインや言語方向の点で既存
データセットを補完する位置付けとなる．
二点目に関して，既存研究 [9–11,19]と同様，自動正規化

手法を適用した入力テキストを用いて，機械翻訳タスクに
おける正規化の有効性を検証する．特に本研究では，正規
化，機械翻訳の両方で，大規模言語モデル（Large Language

Model，LLM）としても知られる高性能な decoder-only言
語モデルを使用し，ソーシャルメディアドメインにおける
最先端のオープンモデルの機械翻訳精度と，逸脱的表記の
翻訳精度への影響を調査する．
評価実験の結果，高精度な正規化モデル [20]を用いた

場合に，自動正規化の適用により複数の翻訳特化モデル・
汎用言語モデルで翻訳精度が向上することが示された．元
から逸脱的表記に頑健であった言語モデルでは，自動正規
化の有効性は確認できなかったものの，人手正規化は有効
であったため，正規化精度に改善の余地があることを確認
した．

2. 関連研究
2.1 UGTに関する機械翻訳シェアドタスク

UGTドメインの機械翻訳研究を推進してきた取り組み
として，WMT（Conference on Machine Translation）にお
ける国際コンペティションの開催が挙げられる．WMT11

では，2010年ハイチ大地震に焦点を当て，ハイチ・クレ
オール語の SMSメッセージを英語に翻訳するタスクが開
催された [21]．
近年では，WMT19，20において，UGTを対象とした機
械翻訳タスクである Machine Translation Robustness タ
スク [1, 2] が行われた．これら Robustness タスクでは，
Transformer [22]等の NMTシステムが用いられ，複数の
参加者が用いた有効な方法として，(i)学習データから低品

質な対訳文を除外するクリーニング，(ii)翻訳不要文字列
のプレースホルダ化，(iii)目標ドメイン単言語テキストの
逆翻訳で作成された疑似対訳データでの学習などが挙げら
れている．
その後のWMT22，23，24では，General Machine Trans-

lation タスク [3–5] のテストセットの一部として UGTド
メインのデータが使用され，WMT23–24では，test suites

（特定の評価観点に焦点を当てた難しいテストセット群）の
一つとして Reddit投稿に由来する RoCS-MT [18] データ
セットが使用された．

2.2 UGT対訳データセット
表 1 に示すように，これまでに構築・公開されている

UGTドメインの対訳データセットはいくつか存在する．
Michel ら [14] は，UGT ドメインにおける大規模な対

訳ベンチマーク構築の先駆的な研究として，Reddit投稿
とその人手翻訳からなる MTNT*1 データセット（英 ↔
仏，英↔日方向）を構築した．同データセットは，前述
のWMT19–20 Machine Translation Robustnessタスクで
も採用され*2，UGTドメインの機械翻訳研究において重
要な貢献を果たしたと考えられる．ただし，翻訳品質が低
い訓練事例も存在していることが指摘されている [15]．

Fujiiら [15]は，MTNTの事例に対してルールおよび人
手翻訳品質評価によるフィルタリングを行った上で，4種
類の言語現象ラベル（「固有名詞」，「名詞の省略」，「口語表
現」，「異表記」）と逸脱した表現に対する正規化情報を付与
した PheMT*3データセット（日→英方向）を構築した．

Rosales Nùñezらは，フランス語ソーシャルメディア投稿
を原文とする PFSMB対訳コーパス*4 [10]（仏→英方向）
*1 https://pmichel31415.github.io/mtnt/index.html
*2 タスクの学習・開発データとして用いられた．テストデータは同
様のプロセスにより別途新たに作成された．

*3 https://github.com/cl-tohoku/PheMT
*4 https://gitlab.inria.fr/seddah/

parallel-french-social-mediabank
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と，そのうち原文 400文に対してスパンレベルでの言語現
象種別と正規化情報を付与した PMUMTコーパス*5 [16]

を構築した．PMUMTコーパスはサイズが小さいものの，
注目する現象以外を正規化後表現に変換したデータを生成
することで，現象ごとの詳細分析が可能になっている．

McNamee ら [17] は，13 言語の Twitter 投稿テキスト
を英語へ翻訳した多言語のMMTC*6データセットを構築
した．McNameeらの実験によると，一般ドメインの事前
学習済み Transformer モデルをドメイン内訓練データで
fine-tuningした際，各言語とも訓練データ 1,000投稿程度
で BLEUスコアの向上が概ね飽和したことが報告されて
いる．

Bawdenら [18]は，英語の Reddit投稿を，人手正規化
の後，5言語に翻訳した RoCS-MT*7データセットを構築
した．同データセット原文の正規化箇所には現象種別も付
与されている．同データセットは，前述のようにWMT23

General Machine Translationタスク [5]でも使用され，商
用翻訳システムおよび参加者システムの性能評価に用いら
れた*8．評価されたシステムの中で，GPT-4 [23]（5-shot）
が自動評価スコア上も定性的にも高い翻訳品質を示したこ
とが報告されている．
その他，ドメイン特化型の対訳コーパスとして，FIFA

2014 world cupに関する英語 Twitter投稿をドイツ語に翻
訳した FooTweetsコーパス*9 [24]，レストランレビューに
関するフランス語 Foursquare投稿を英語に翻訳したコー
パス*10 [25]なども構築されている（表 1には非掲載）．

2.3 テキスト正規化と機械翻訳応用
テキスト正規化 [8]は，典型的には，（一般ドメイン向け
の）自然言語処理技術・モデルにとって対処が難しいよう
な，ある種の言語現象の表現を，処理しやすい表現に変換
する基盤技術またはタスクを指す*11．特に UGT の正規
化 [27,28]（以降，単に「テキスト正規化」や「正規化」と
言及する）は，UGT特有の逸脱的・非標準的な表現を一
般的・標準的な表現へ変換する技術として多くの研究が行
われてきた．
テキスト正規化を前段タスク，機械翻訳を後段タスクと

して，機械翻訳における正規化の有効性を検証した研究に
*5 https://github.com/josecar25/PMUMT_annotated_UGC_

corpus
*6 https://pmcnamee.net/research/mmtc/mmtc.html
*7 https://github.com/rbawden/RoCS-MT
*8 WMT24 [5] で は ，RoCS-MT の 拡 張 版 デ ー タ セ ッ ト
（en→{cs, de, es, hi, is, ja, ru, uk, zh}方向）が使用された．ただ
し，同データセットは本稿投稿時点で未公開のようである．

*9 https://github.com/HAfli/FooTweets_Corpus
*10 https://europe.naverlabs.com/

research/natural-language-processing/

machine-translation-of-restaurant-reviews/
*11 ただし，正規化結果の直接的な「利用者」はモデルに限らない．
テキスト正規化によって，当該言語の第二言語学習者にとっての
可読性が向上することを示した研究もある [26]．

は，[9–11] などがある．Wangら [9]は，線形分類器による
正規化モデルと，フレーズベース機械翻訳を用いて，中国語・
英語間の SMS正規化・翻訳に取り組んだ．Rosales Nùñez

ら [10]は，Transformerに基づく grapheme-to-phoneme変
換型の正規化モデルと，フレーズベースおよびTransformer

機械翻訳モデルを用いて，フランス語→英語のUGT正規
化・翻訳に取り組んだ．Ahmadiら [11]は，Transformer

encoder-decoderモデルを用いて，ダイグロシア状態にあ
るペルソ・アラビア文字の少数言語における，支配的言語
の影響を受けたソーシャルメディアの非標準的な表記を正
規化する問題に取り組み，人工的なノイズを加えたテキス
トの機械翻訳タスクで，正規化モデルの有効性を示した．

2.4 UGT機械翻訳手法の評価
2010年代前半頃の UGT機械翻訳の研究では，オンライ

ンフォーラムや SMSメッセージ等の UGTに対し，統計
的機械翻訳システムの翻訳品質評価が行われた [21,29,30]．
近年は，LLMを対象としたUGTドメインにおける翻訳品
質評価も行われている [31,32]．

Popovicら [31]は，商品レビュー対訳コーパス*12（英語
→クロアチア語，フィンランド語，フランス語）を用いて，
人間の翻訳者，商用サービスなどの機械翻訳システムおよ
び ChatGPT（GPT-3.5）[33]に対し，原文中のノイズが翻
訳結果に与える影響を分析した．ChatGPTはノイズを訂
正した翻訳結果を出力することが多く，他のMTシステム
と比べてノイズに頑健であったことが報告されている．

Panら [32]は，LLMを用いた翻訳で，文脈内学習により
ノイズへの頑健性が向上することを示した．具体的には，
ノイズを含む原文とその翻訳文のペアを few-shot事例と
した文脈内学習により，人工的なノイズを加えた非 UGT

（中国語→複数言語），自然なノイズを含む UGT（インド
ネシア語→中国語）の双方についての翻訳精度が向上す
ることを報告した．

3. 対訳データセットWRIME-MTの構築
ソーシャルメディアの日本語投稿テキストを収録した既

存のデータセットに，WRIME*13 [34,35]およびWRIME

正規化データセット [36]がある．WRIMEは，感情分析タ
スク向けに感情ラベルが付与された 35,000投稿のデータ
セットであり，WRIME正規化データセットは，WRIME

のうち 6,000 投稿に対し，正規化情報（正規化テキスト
と種別）が付与されたデータセットである．本研究では，
WRIMEおよびWRIME正規化データセットの原文と正
規化情報を利用し，日本語投稿 769件とそれらの英訳およ
び中国語訳からなる，機械翻訳評価のためのWRIME対訳

*12 https://fedora.clarin-d.uni-saarland.de/dihutra/

index.html
*13 https://github.com/ids-cv/wrime
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原文 正規化後文 補足情報 翻訳文

毎 日<1>FB</1>開
いてるよーー

毎 日<1>FB</1>開
いてるよ

FB：Facebook I open <1>FB | |Facebook</1>

every day.

表 2 翻訳作業文の例

データセット（WRIME-MT）を構築した*14．
本データセットの構築は，(1)作業対象投稿の選択，(2)

言語情報アノテーション作業，(3)翻訳作業，の手順で行っ
た．詳細を以下に述べる．

3.1 作業対象投稿の選択
所定予算内で翻訳が可能な件数として，WRIME正規化

データセット（学習・開発・テストセット全体）の投稿の
うち 769件を選択した．これら作業対象投稿の選択は，第
一著者が，「UGT特有の崩れた表現，固有名，ネットスラ
ング，文化依存表現を含むなど，他言語への翻訳が容易で
はないような投稿である」という観点で行った．したがっ
て，本データセットのこれらの投稿は，原文の文字通りの
語彙的な直訳では誤訳になりやすい投稿を多く含むと考え
られる．

3.2 言語情報アノテーション作業
本データセットを用いて多角的な評価が可能となること

を意図し，第一著者により 3種類の言語情報—正規化情報，
固有名，略語等の補足情報—を作業対象投稿に付与した．
言語情報アノテーションの内容は次の通りである．

正規化情報 WRIME 正規化データセットで施された正
規化事例・分類カテゴリは，感情分析タスクでの
有用性を想定したタスク特化の事例（例：感情記号
“(笑)”→ “<8>”）や，後段タスクへの影響が軽微と思
われる事例（例：記号の変換 “「悪の教典」”→ “『悪
の教典』”），原文からの意味の変化が生じ得る，表記
の正規化の範疇を超えると思われる事例（例：ネット
スラング “ググったら”→ “検索すると”）も含んでい
る．そこで，本データセットでは，単語レベルの逸脱
的表記の揺れの解消や誤記の訂正にあたる正規化事例
のみ収録することを目的に，オリジナルの正規化事例
の一部カテゴリのみ残し*15，さらに一部の事例の追
加・削除・編集を行った*16．

固有名 各投稿に対し，人名・キャラクター名，組織名，

*14 WRIME-MT および WRIME 正規化データセットは，利用規
約に同意した利用申請者に対して提供される予定である．

*15 Kondo らの分類体系 [36] のうち，誤字脱字-タイプミス/誤用，
異表記-伏字/発音の崩れ/同音異表記，強調表現-音の挿入/繰り
返し，を正規化事例として残し，異表記-略語/外来語については
後述する補足情報の扱いとした．

*16 たとえば，準体助詞「ん」が「の」に一律に変換されている事例
群については，“-んだ”→ “-のだ” など，正規化によって現代日
本語の表現としてやや特殊なニュアンスや不自然さが生じている
可能性があるものは，削除した．

地名・施設名，プロダクト名，イベント名に該当する
固有名（正式名称およびその他の呼称）に関して，該
当するスパンと固有名のフラグの情報を付与した．な
お，固有名の崩れた表記に対する標準的な表記は，正
規化情報ではなく後述の補足情報として付与した（例：
“でーんーまーあーくー”→ “デンマーク”）．

補足情報 各投稿に対し，固有名の略称や，非自明な固有
名・スラング等を含む場合，該当するスパンと簡潔な
説明テキストを「補足情報」として付与した*17．略
称・略語とされる表現の中には，テキスト中に出現す
る略語を展開後の表現で単純に置換すると，日本語の
文章として不自然になったり，翻訳内容に大きな影響
を与えることが懸念されるものがある*18．そのため，
略称については逸脱的表記の正規化とは分け，補足情
報という扱いとした．補足情報の実例として，たとえ
ば，“ハロハピ”に対して “『ハロー、ハッピーワール
ド!』”，“カブ”に対して “「あつまれどうぶつの森」の
仮想的な株”というテキストが付与されている．

3.3 翻訳作業
日本語投稿の英語および中国語への翻訳作業を翻訳会社

に委託した．翻訳作業は，日英翻訳者 5名・日中翻訳者 5

名により，(1) 翻訳担当者による翻訳とセルフチェック，
(2)目標言語母語話者によるバイリンガルチェックの手順
で実施された．
翻訳作業の仕様を，「目標言語の自然な表現を用いて，原

文の語彙的な意味を伝えることに焦点を当て，逸脱的表記
の逸脱的表記への変換および記号的な表現の変換は避け
る」という趣旨の下，以下のように定めた．
翻訳単位 翻訳の単位は「投稿」とする．原投稿の文数と

翻訳後の文数を同数にする必要はない．
訳出スタイル 原文中に崩れた表現（逸脱的表記）が含ま

れる場合，翻訳文では目標言語の崩れた表現を用いる
ことはしない．目標言語の正書法や，標準的な記法・
punctuationの使用法から逸脱しない範囲で，SNS投
稿として一般的なカジュアルな表現・スタイルを用い
る．原文で方言が用いられている場合，翻訳文では目
標言語の共通語・標準語を用いて翻訳する．

*17 オリジナルの正規化情報のうち異表記-略語/外来語にあたるもの
を補足情報とし，さらに必要に応じて第一著者が追加した．

*18 たとえば，「ズッ友からのプレゼント」という文章を「ずっと友達
からのプレゼント」とすると不自然さが生じる（日本語母語話者
がこの文章をはじめから作成する状況は極めて稀と考えられる）．
「KY」（「空気が読めない（人）」）なども同様である．
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正規化情報 翻訳対象は原文である．崩れた表現を反映し
ないようにするための参考情報として，原文を整った
表現で書き換えた「正規化後文」（表 2参照）も提示
する．

補足情報 原文中の略語・固有名詞・スラング等について，
その意味や正式名称等が補足情報欄に記載されている
場合がある（表 2参照）．原文の解釈は，補足情報に
記載された内容を前提として行う．

固有名詞タグ 原文中の固有名詞（名詞を超える句や節の
表現も含む）は，目標言語の一般的・自然な表記を用
いて翻訳する．表 2の例のように，原文中の固有名詞
は “<1>”と “</1>”のようなタグで囲まれている場
合があり，その場合には翻訳文中の対応する箇所を同
じタグで囲む．固有名詞の訳語として複数の妥当な表
現・表記が考えられる場合，“| |”記号で区切って併記
する．

ネットスラング・文化依存表現 ネットスラングや，その
他日本特有と思われる文化に依存した表現について
は，目標言語で対応する表現がある場合はそれを使用
し（例：“3密”→“Three Cs”），特にない場合には原言
語での意味を反映した目標言語での自然な訳を作成す
る．説明的な訳は可能な範囲で避ける．

顔文字・アスキーアート 顔文字・アスキーアートは翻訳
対象から除外し，翻訳文には含めない．なお，顔文字
等が句点の役割を果たしている場合，翻訳文で句点相
当の記号を挿入する必要がある．その際，翻訳文にお
いて感嘆符・疑問符などを使用し，原文中の顔文字等
が表しているニュアンスを反映してもよい．

ハッシュタグ ハッシュタグ（「#」で始まる文字列）は目
標言語の表現に翻訳する．文を構成する単語として使
われている場合，翻訳文中の適切な位置で訳出する．
ハッシュタグと前後の単語との間に半角スペースを挿
入する．

アカウント名・URL 原文に含まれているアカウント名
（「@」で始まる英数字記号列）と URLは，翻訳文にそ
のまま残す．（実際には，作業対象の投稿でアカウン
ト名や URLを含むものはなかった．）

4. 実験
WRIME-MTデータセットを用いて，ソーシャルメディ

アテキストの機械翻訳タスク（日英，日中）における，最
先端の翻訳特化モデル・汎用言語モデルの精度を評価する．
具体的に，次の二つのシナリオの実験を行う．
• 実験 1：翻訳モデルの翻訳精度評価（開発セット）．複
数のモデルシリーズ・モデルサイズ（最小 0.5B～最大
70B）のモデルの精度を評価し，各モデルの精度の違
いの傾向を確認する．

• 実験 2：正規化適用時の翻訳モデルの翻訳精度評価（テ

#Post #Norm #Ent #Supp

All 769 451 707 563

Train 5 4 6 5

Dev 64 28 59 62

Test 700 419 642 496

表 3 WRIME-MTの記述統計．#Post，#Norm，#Ent，#Supp

列はそれぞれ，投稿，正規化，固有名，補足情報の事例数．

ストセット）．異なる翻訳精度（低/中/高）の翻訳モ
デルを対象に，正規化モデルによる正規化適用により
翻訳精度の向上が見られるかを確認する．

4.1 実験設定
データ分割

WRIME-MTの 769件を，学習セット 5件，開発セット
64件，テストセット 700件となるようランダムに分割し
た．データセットの記述統計を表 3に示す．学習セットは，
decoder-onlyモデルの文脈内学習の few-shot事例用に作成
したものである．ただし，各 decoder-onlyモデルで 0-shot

および 5-shot推論を実施し，開発セットにおける精度を確
認したところ，多くのケースで 5-shotにより精度が低下し
たため，以降の実験では 0-shotの結果のみ報告する*19．
評価指標
評価指標には，BLEU*20 [38]，COMET*21 [39]，Term

Success Ratio（TSR） [40]を用いた*22．BLEUはシステ
ム出力と参照訳，COMETは原文とシステム出力と参照訳
を入力とし，それぞれ n-gramの包含率，深層学習モデル
（XLM-RoBERTa）が予測したスコアにより，システム出
力の品質を推定する指標である．TSRは，原文中の各用語
に対する参照訳中の訳語を，システム出力が含んでいるか
を Fuzzy matchで評価する指標*23であり，本実験では固
有表現を評価対象の用語とした．3指標とも，0–100の値
の範囲で表示する．
翻訳モデル
翻訳精度の評価対象として，多言語および日本語中心モデ

*19 5-shot 推論において，“Japanese:\n{ja text}\n\nEnglish:\n
{en text}\n\n”といった形式の事例を 5件分並べ，最後に翻訳
対象の原文（と “English:\n”）を連結したプロンプトを使用し
たところ，モデルの生成結果は，翻訳対象文の訳文に続けて独自
の原文と訳文をいくつも並べたような出力が多く見られ，この点
が各指標のスコアが下がる主な要因となったと考えられる．

*20 sacreBLEU [37]（https://github.com/mjpost/sacrebleu）
を使用した．
（日英：“nrefs:1|case:mixed|eff:no|tok:intl|smooth:exp|
version:2.5.1”，日中：“nrefs:1|case:mixed|eff:no|
tok:zh|smooth:exp|version:2.5.1”）

*21 https://huggingface.co/Unbabel/wmt22-comet-da
*22 原文中の固有名について，参照訳は妥当な複数の固有名の情報を
持つ場合がある（3.3節）．BLEUと COMETでは，1つの固有
名を当てはめた単一の参照訳を用いて計算し，TSR では複数の
正解固有名のいずれかに一致しているかという基準で計算した．

*23 https://pypi.org/project/fuzzywuzzy/，partial ratio()

を使用．
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Normalizer
Twitter 14 domains

P R F0.5 P R F0.5

DeBERTa-L 64.0 52.8 61.4 78.5 56.7 72.9

Sarashina2.2-3b 79.0 67.4 76.3 78.0 66.2 75.3

表 4 JMLN [20] テストセットでの正規化モデルの正規化精度．

ルを用いた（各モデルの正式なHugging Face IDは付録A.1

に示す）．具体的には，多言語の encoder-decoderモデルで
あるNLLB-200-3.3B [41]，多言語の翻訳特化 decoder-only

モデルであるTowerInstruct-13B [42]，X-ALMA-13B [43]，
GemmaX2-28-9B [44]，多言語の汎用 decoder-onlyモデル
である Qwen3 [45]の各サイズのモデル，日本語中心の汎
用 decoder-only モデルである TinySwallow [46]，Llama-

3.1/3.3-Swallow [47]，Sarashina2/2.2 [48, 49] の各サイズ
のモデルである（公開されている場合は指示学習済みモデ
ルを用いた）．各モデルについて，0-shotでの推論または
文脈内学習を行い，各 decoder-onlyモデルでは付録A.1に
示す英語または日本語の指示テキストを含むプロンプトを
使用した．
正規化モデル
正規化モデルとして，Higashiyamaら [20]が構築したモデ

ルを用いた．具体的には，Japanese Multi-Domain Lexical

Normalization Dataset（JMLN）*24を用いて正規化タスク
で fine-tuningされた encoder-onlyおよび decoder-onlyモ
デルで，正規化精度が高かった日本語DeBERTa*25 [50]ベー
スのモデル（Full-Seg-POS法を採用，以降 DeBERTa-

L-Normモデルと呼ぶ）と，Sarashina2.2-3b*26ベースのモ
デル（Struct法を採用，以降 Sarashina2.2-3b-Normモデ
ルと呼ぶ）を使用した．

2 モデルの JMNL テストセット（Twitter ドメイン，
Twitterを含む 14ドメイン全体）における正規化精度（適
合率，再現率，F0.5 スコア）を表 4に示す*27．再現率は
Sarashina2.2-3bが勝っており，適合率については，14ド
メイン平均では 2モデルでほぼ同等であるものの，Twitter

ドメインでは Sarashina2.2-3bが勝っている．
なお，WRIME正規化データセットのうちWRIME-MT

テストセットと重複していない投稿については，正規化モ
デルの学習に利用可能である．JMLNとアノテーション基
準は異なるものの，2種類の正規化データセットの両方を
用いることで正規化および後段タスクの精度向上に寄与す
るかについては，今後検証したい．
*24 JMLNの学習セットは 13k文，5.9k正規化事例からなる．JMLN
データセットおよび正規化モデルのソースコードは公開予定と
なっているが，本稿投稿時点では未公開．

*25 https://huggingface.co/ku-nlp/

deberta-v2-large-japanese-char-wwm
*26 https://huggingface.co/sbintuitions/sarashina2.2-3b
*27 文献 [20] では各モデルについて 2 回の実行結果の平均精度を報
告しているが，表 4 には，4.3 節の実験に使用した，2 回のうち
1 回のモデルチェックポイントの結果を示した．

4.2 基本の翻訳精度評価
実験 1 として，表 5 に示すように，WRIME-MT 開発

セットにおける各翻訳モデルの翻訳精度を評価した．各
decoder-only モデル・各翻訳方向では，日本語および英
語の指示テキストのプロンプトを試し，精度（BLEU と
COMETスコアの和）が高かった方の結果を記載している．
参考に，システム出力の代わりに原文（source text）お

よび参照訳（reference text）を使用した場合の各評価指標
のスコアも示した．BLEUスコアが極めて低い値になって
いる一方，COMETスコアは，特に中国語への翻訳におい
て，比較的高い値となった．翻訳結果の品質・妥当性を判
断する際は，このような点も考慮しつつ，BLEU，COMET

スコアの両方が十分高い値であるかを踏まえる必要があ
る*28．
結果は次のようにまとめられる．(1)全体として，サイズ

が大きいモデル，あるいは公開時期が新しいモデルの翻訳
精度が高い傾向が見られるが，その限りではないケースも
あった（たとえば，Sarashina2では 70Bより 7Bモデルが高
精度）．(2)日英方向で相対的に高精度（COMETスコア 70

以上）であったモデルは GemmaX2-28-9B，Sarashina2.2-

3B-Instruct，Llama3.3-Swallow-70B-Instruct，Qwen3（8B

以上）であり，日中方向で高精度であったモデルは X-

ALMA-13B，GemmaX2-28-9B，Sarashina2.2-3B-Instruct，
Qwen3（4B以上）であった．したがって，GemmaX2-28-9B，
Sarashina2.2-3B-InstructおよびQwen3（8B以上）は両方
向で翻訳精度が高いモデルであり，特に Sarashina2.2-3B-

Instructはモデルサイズに比して高精度と言える．(3) TSR

については，ほとんどのモデルで日英よりも日中方向で値
が低い．これは，中国語において多くの固有名が漢字と英
字の複数の妥当な表記（例：“Twitter”と “推特”）を持つ
一方，参照訳では，（3.3節の通り複数の固有名詞の訳語を
記述可能な仕様であるものの，実際には，）それらが網羅さ
れていないことが多い点の影響が考えられる．

4.3 正規化適用時の翻訳精度評価
実験 2 として，表 6 および表 7 に示すように，原文

（Normalizer=None），正規化モデル（DeBERTa-L-Norm，
Sarashina2.2-3B-Norm）による原文の正規化結果，人手付
与された正解正規化文（Oracle）の 4種類の入力を用いて，
WRIME-MT テストセットでの各翻訳モデルの翻訳精度
を比較した．翻訳モデルについては，日英・日中方向の
各翻訳精度が最も低かった NLLB-200-3.3B，翻訳精度が
中程度であった TowerInstruct-13B，翻訳精度が高かった

*28 実際，中国語への翻訳タスクで日本語のテキストが出力されて
いる事例も見られた．たとえば，TinySwallow-1.5B-Instructで
は，“Japanese:\n(中略) 初代以外だとルビサファ大好きだから
な～\n\nChinese:\n” の入力に対し，“初代以外だと、ルビサ
ファが好きなんだね。” と，日本語による会話的応答のようなテ
キストが出力された事例があった．
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Date Translator Inst
ja-en ja-zh

BLEU COMET TSR BLEU COMET TSR

Source text 0.1 51.1 10.2 1.9 63.0 11.9

Reference text 100.0 93.5 100.0 100.0 95.4 100.0

2022/07 NLLB-200-3.3B 9.9 58.8 22.0 8.7 56.6 1.7

2024/02 TowerInstruct-13B (ja/ja) 9.3 65.3 30.5 15.4 63.9 15.3

2024/10 X-ALMA-13B-Group6 (en/ja) 18.8 69.4 30.5 15.9 70.9 16.9

2025/02 GemmaX2-28-9B (en/en) 19.1 71.9 28.8 20.5 73.5 25.4

2025/01 TinySwallow-1.5B-Instruct (ja/en) 14.4 64.8 22.0 7.8 62.6 8.5

2025/03 Sarashina2.2-0.5B-Instruct (en/ja) 8.5 66.4 22.0 6.5 62.0 10.2

2025/03 Sarashina2.2-1B-Instruct (en/ja) 12.5 69.5 32.2 10.4 65.2 8.5

2025/03 Sarashina2.2-3B-Instruct (en/ja) 19.6 74.4 42.4 17.6 74.3 16.9

2024/06 Sarashina2-7B (en/ja) 15.4 67.8 44.1 8.2 64.4 13.6

2024/08 Sarashina2-70B (en/ja) 14.8 61.6 32.2 8.6 60.7 23.7

2024/11 Llama3.1-Swallow-8B-Instruct (en/en) 14.8 69.7 37.3 15.3 65.1 15.3

2025/03 Llama3.3-Swallow-70B-Instruct (en/en) 18.6 72.1 35.6 21.4 65.2 25.4

2025/04 Qwen3-1.7B (en/en) 8.5 64.2 18.6 8.2 65.2 16.9

2025/04 Qwen3-4B (ja/en) 17.1 67.7 25.4 23.2 72.5 22.0

2025/04 Qwen3-8B (en/ja) 21.2 70.6 30.5 24.7 73.9 32.2

2025/04 Qwen3-14B (en/en) 22.6 71.2 37.3 26.5 75.3 32.2

2025/04 Qwen3-32B (en/ja) 23.7 72.8 40.7 22.0 74.1 33.9

表 5 WRIME-MT 開発セットにおける各翻訳モデルの精度．「Date」列はモデル公開時期，
「Inst」列は各モデルで採用したプロンプトの指示言語 (ja-en/ja-zh）を示す．

Translator Normalizer
All Standard Non-standard

BLEU COMET BLEU COMET BLEU COMET

NLLB-200-3.3B

None 10.5 61.0 11.8 61.3 8.7 60.6

DeBERTa-L-Norm 9.0 61.4 11.6 61.3 6.7 61.5

Sarashina2.2-3B-Norm 8.9 62.1 11.9 61.8 6.4 62.4

Oracle 9.9 62.6 11.9 61.3 7.9 64.2

TowerInstruct-13B

None 11.1 67.1 14.4 68.2 8.5 65.7

DeBERTa-L-Norm 14.2 68.1 15.6 68.2 12.8 67.9

Sarashina2.2-3B-Norm 14.0 68.9 14.4 68.7 13.6 69.1

Oracle 15.2 69.2 14.3 68.1 15.9 70.7

Sarashina2.2-3B-Instruct

None 19.2 74.4 19.1 73.9 19.3 75.0

DeBERTa-L-Norm 18.8 73.9 18.7 73.8 18.9 73.9

Sarashina2.2-3B-Norm 18.7 74.5 18.7 74.1 18.7 75.0

Oracle 18.9 75.1 19.1 74.0 18.6 76.6

Qwen3-32B

None 24.4 74.2 24.1 74.0 24.8 74.5

DeBERTa-L-Norm 24.3 74.1 23.7 73.9 25.0 74.3

Sarashina2.2-3B-Norm 24.6 74.9 24.1 74.3 25.2 75.7

Oracle 25.0 75.4 24.0 74.0 26.0 77.2

表 6 WRIME-MT テストセットにおける各正規化法適用時の各翻訳モデルの精度（日→英）．
正規化なし（Normalizer=None）に対し，正規化モデル適用でスコアが向上した場合に
下線で表示．
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Translator Normalizer
All Standard Non-standard

BLEU COMET BLEU COMET BLEU COMET

NLLB-200-3.3B

None 8.9 56.1 9.4 56.1 8.3 56.1

DeBERTa-L-Norm 9.8 56.9 9.4 56.4 10.4 57.6

Sarashina2.2-3B-Norm 9.3 57.1 9.9 56.6 8.7 57.7

Oracle 8.8 57.1 9.4 56.2 8.1 58.3

TowerInstruct-13B

None 12.1 65.5 15.5 67.0 9.4 63.6

DeBERTa-L-Norm 12.9 65.7 15.3 66.5 10.2 64.7

Sarashina2.2-3B-Norm 13.2 66.6 15.5 67.4 9.9 65.6

Oracle 14.2 67.0 15.4 66.9 13.0 67.2

Sarashina2.2-3B-Instruct

None 16.5 73.8 16.8 73.0 16.1 74.9

DeBERTa-L-Norm 16.5 73.5 16.7 72.8 16.2 74.4

Sarashina2.2-3B-Norm 16.8 73.7 17.0 72.7 16.6 75.0

Oracle 17.0 74.4 17.0 73.0 17.0 76.2

Qwen3-14B

None 28.2 77.5 28.7 77.6 27.5 77.3

DeBERTa-L-Norm 27.9 77.5 28.4 77.4 27.2 77.6

Sarashina2.2-3B-Norm 28.1 78.5 28.5 78.1 27.7 78.9

Oracle 28.7 79.0 28.7 77.6 28.7 80.9

表 7 WRIME-MT テストセットにおける各正規化法適用時の各翻訳モデルの精度（日→中）．
正規化なし（Normalizer=None）に対し，正規化モデル適用でスコアが向上した場合に
下線で表示．

Sarashina2.2-3B-Instruct および Qwen3（日英では 32B，
日中では 14B）の計 4モデルを対象とした．また，翻訳精
度は，全投稿（All，700件），人手付与された正規化事例
を含まない投稿（Standard，391件），人手付与された正規
化事例を含む投稿（Non-standard，309件）の 3つのサブ
セットに対してそれぞれ算出した．原文に施された正規化
が適切である場合，Standardサブセットにおける翻訳精度
は同等となり，Non-standardサブセットにおける翻訳精
度は向上すると期待される．
表 6 の日英翻訳における結果は次のようにまとめられ

る．(1) 4 翻訳モデルとも，原文の翻訳精度よりも正解
正規化文の翻訳精度の方が高くなり，Non-standardサブ
セットでは，COMETスコアが 1.6～5.0ポイント高くなっ
た（ただし BLEU スコアは下がるケースもあった）．(2)

NLLB-200-3.3B，TowerInstruct-13B，Qwen3-32Bの 3翻
訳モデルでは，正規化非適用（None）と比べた適用時の精
度は，Sarashina2.2-3B-Norm 正規化モデルを用いた場合
を中心に向上した．具体的には，Non-standardサブセッ
トでは COMETスコア+1.2～+3.4，Allでは+0.7～+1.8

であった（BLEUスコアは低下・向上の両方のケースが見
られた）．(3)一方，翻訳モデル Sarashina2.2-3B-Instrctで
は，Sarashina2.2-3B-Norm正規化モデルを適用した場合，
BLEUスコアがやや低下し，COMETスコアは僅かな変化の
みであった．(4)各翻訳モデルについて，DeBERTa-L-Norm

モデルによる正規化適用の効果は，Sarashina2.2-3B-Norm

モデルに比べて限定的であり，翻訳モデル NLLB-200-

3.3B，TowerInstruct-13Bにおいてのみ COMETスコアの
向上（Non-standard サブセットで +1 ポイント以上）が
見られ，翻訳モデル Sarashina2.2-3B-InstrctではCOMET

スコアが低下した（Non-standardサブセットで −1.1ポイ
ント）．(5)各翻訳モデルについて，Standardサブセット
では，正規化モデル適用による COMETスコアの低下は
ほぼ見られなかった（−0.1～+0.5ポイントの変化）．
表 7 の日中翻訳の結果も，ほぼ同様の傾向であった．

つまり，Sarashina2.2-3B-Normモデルで正規化した場合，
NLLB-200-3.3B，TowerInstruct-13B，Qwen3-14Bの 3翻
訳モデルで正規化適用の有効性が確認でき，Non-standard

サブセットではCOMETスコア+1.6～+2.0，Standardサ
ブセットでは+0.4～+0.5，Allでは+1.0～+1.1であった．
議論

2言語方向についての実験結果から，正規化の有効性に
ついて次のようにまとめられる．逸脱的表記を含む原文の
意味内容を反映した機械翻訳結果を生成する目的におい
て，人手正規化には劣るものの，正規化モデルによる正規
化は一定の有効性が見られた．
具体的には，翻訳モデルNLLB-200-3.3B，TowerInstruct-

13B，Qwen3-14B/32B に お い て は ，正 規 化 モ デ ル
Sarashina2.2-3B-Norm を適用した場合に COMET スコ

c⃝ 2025 Information Processing Society of Japan 8

Vol.2025-NL-264 No.7
2025/7/6



情報処理学会研究報告
IPSJ SIG Technical Report

アを中心に翻訳精度が向上した．ただし，正規化モデル
DeBERTa-L-Normによる正規化の有効性は限定的であり，
この違いは，両正規化モデルの Twitterドメインにおける
正規化精度（表 4の適合率・再現率参照）の違いによる結
果と判断できる．
一方，翻訳モデル Sarashina2.2-3B-Instructにおいては，

正規化モデル Sarashina2.2-3B-Norm適用時もCOMETス
コアの変化は僅かで，明確な有効性は確認できなかった．
理由として，翻訳モデルが，逸脱的表記と（原言語または
目標言語の）標準的表記の対応関係についての「知識」を
有している場合，正規化の有無にかかわらず誤訳は生じず，
翻訳結果に対して重大な影響を与えないということは十分
考えられる．実際，4.4節で示す事例では，Sarashina2.2-

3B-Instructは，逸脱的表記を含む原文に対して最も頑健な
翻訳結果を示した．ただし，同モデルにおいても人手正規
化の適用時は COMETスコアの向上が見られたことから，
同モデルが有する「知識」は十分ではないこと，正規化モ
デルが有効となるには正規化精度の向上—より非自明な逸
脱的表記に対する正確な正規化—が必要であると言える．

4.4 事例分析
固有名・スラングに対する翻訳結果例
開発セットの事例における，正規化適用なしの状況での

翻訳モデル（4.3節と同じ 4モデル）の出力事例を表 8に
示す．
例 (a)は，「どうぶつの森シリーズ」の略称 “どう森”を

含むテキストである．4翻訳モデルのうち，Sarashina2.2-

3B-Instructのみ適切な英語名称 “Animal Crossing”を出
力しており，他の翻訳モデルは適切な生成に失敗している．
例 (b)は，「YouTube」の投げ銭機能「スーパーチャッ

ト」の略称 “スパチャ”を含むテキストである．Qwen3-32B

のみ，妥当な英訳 “super chat”を出力している．ただし，
サービスの名称のため “Super Chat”という表記がより適
切である．他の翻訳モデルは適切な訳の生成に失敗して
いる．
逸脱的表記に対する翻訳結果例
開発セットの事例における，正規化適用なしまたは正規

化モデル適用の状況での翻訳モデル（4.3節と同じ 4モデ
ル）の出力事例を表 9に示す．
例 (c) は，“かほり” という歴史的仮名遣いの表現を含

むテキストである．TowerInstruct-13B，Sarashina2.2-3B-

Instruct，Qwen3-32Bの 3翻訳モデルは，原文に対しても，
Sarashina2.2-3B-Normモデルによる正規化後文に対して
も，妥当な訳を出力した．翻訳モデル NLLB-200-3.3Bは，
原文の ‘かほりがする”に対して不適切な訳を出力したが，
正規化後の “香りがする”に対しては妥当な訳を出力した
（ただし，正規化前後とも “初夏”に対する誤訳を含む）．
例 (d)は，童謡の替え歌を歌っている様子が表されたテ

(a)

Source 俺もどう森してみたなったど。
Reference I wanted to trying playing

Animal Crossing too.

NLLB I’ve been trying to do that for years. 7

Tower I tried to be like him. 7

Sarashina I’ve been wanting to try Animal Crossing. ✓
Qwen I also tried doing something about the for-

est.

7

(b)

Source ...なんて事ない雑談の生放送でもスパチャが
飛んでいく。

Reference ... casual live chats can still attract tons

of super chats.

NLLB ... even if it’s a live broadcast of a small

talk, it’s a spatch.

7

Tower ... live broadcasts of casual chats are pop-

ular. It seems that the target of what peo-

ple value is changing.

7

Sarashina ... live streams of casual chats can still

receive スパチャ.

7

Qwen ... even live broadcasts of casual chatter

can receive super chat donations.

△

表 8 WRIME-MT 開発セット事例に対する翻訳モデル（NLLB-

200-3.3B，TowerInstruct-13B，Sarashina2.2-3B-Intstruct，
Qwen3-32B）の出力の例．“...”は原文・参照訳・出力結果の
一部を省略して表示していることを表す．“✓”，△，および
“7”は，原文の下線部の表現に対する訳がそれぞれ適切である
こと，一部不適切な点があること，適切でないことを示す（翻
訳結果全体が適切であることを必ずしも意味しない）．

キストであり，全体が逸脱的表記となっている*29．原文に
対する翻訳結果では，Sarashina2.2-3B-Instruct のみ妥当
な訳文を出力した（ただし，不要な注釈も出力している）．
DeBERTa-L-Normモデルによる正規化後文は，不適切な
正規化により解釈不能な文となっており，各翻訳モデルの
翻訳結果もそれに応じて元の原文の意味内容を表さないも
のになっている．Sarashina2.2-3B-Norm モデルによる正
規化後文は，一部（“でーん”の部分）の漏れを除き適切な
正規化であり，各翻訳モデルとも “もういくつ寝ると”の
部分を反映した訳を生成した．“でーんマーク”の部分に対
しては，Sarashina2.2-3B-Instructのみ “Denmark”と出力
できている（ただし，不要な “’s flag”も出力している）．
例 (e)は，「サブスク（サブスクリプション）」を表す逸

脱的表記 “さぶすく”を含むテキストである．原文に対す
る翻訳結果では，Sarashina2.2-3B-Instructのみ，“さぶす
く”に当たる部分も含めて妥当な訳文を出力している．正
規化後文に対する翻訳結果では，NLLB-200-3Bを除き，各
*29 参照訳は，逸脱的表記を反映した “Deeeenmaaaark”を含んでい
るが，翻訳仕様に基づくと，本来 “Denmark” が適切である．
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Normalizer & Input text Translator Output text Adequacy

(c)

[None]

Reference It smells like early summer in the air!

初夏のかほりがするぜ

NLLB I’m gonna miss the first summer. 7

Tower The fragrance of early summer ✓
Sarashina The scent of early summer is palpable. ✓
Qwen The scent of early summer. ✓

[Sarashina2.2-3b-Norm]

NLLB Smells like the first summer. 7

初夏の香りがするぜ
Tower The scent of early summer ✓
Sarashina The scent of early summer is here. ✓
Qwen It smells like early summer. ✓

(d)

[None/DeBERTa-L-Norm]

Reference How many more sleeps until Deeeenmaaaark

もーいーくつねーるとー、
NLLB ♪ I’m not gonna let you down ♪ 7

でーんーまーあーくー♪
Tower Moikutsubenaru to, donmai aku ♪ 7

Sarashina How many more days until Denmark? (Note: This is a ... △
Qwen I’m going to sleep now, goodnight ♪ 7

[DeBERTa-L-Norm]

NLLB ♪ ♪ I’ll be there, I’ll be there ♪ 7

もーいつねる、ままでく♪
Tower Mooitsuneru, Mamadeku ♪ 7

Sarashina I don’t know when I’ll go to sleep yet. 7

Qwen I’m going to sleep now, goodnight ♪ 7

[Sarashina2.2-3b-Norm]
NLLB How much more sleep do you need, Mark? 7

もういくつ寝ると、 Tower How many more times can I sleep, don’t Mark ♪ 7

でーんマーク♪ Sarashina How many sleeps until Denmark’s flag? △
Qwen How many more naps until Daimark?♪ 7

(e)

[None/DeBERTa-L-Norm]

Reference It looks like I can catch up on it with a subscription service,

so I’ll watch it all together eventually.

さぶすくでみれそうだから
NLLB I’m sure I’ll miss it so I’ll have to put it together. 7

いずれまとめて。
Tower I’ll catch up on it sometime. 7

Sarashina I think I can catch up through subscription so I’ll watch it

all at once later.

✓

Qwen I think I can watch it on subsoku, so I’ll watch it all later. 7

[Sarashina2.2-3b-Norm]

NLLB I’m sure I’ll see it on the subscript so I’ll put it together. 7

サブスクでみれそうだから

Tower I’ll probably watch it later with a subscription. △

いずれまとめて。

Sarashina It seems like it’s available on subscription, so I’ll catch up

later when I have time.

△

Qwen I think I can watch it through a subscription service, so I’ll

catch up later.

△

表 9 WRIME-MT 開発セット事例に対する翻訳モデル（NLLB-200-3.3B，TowerInstruct-

13B，Sarashina2.2-3B-Intstruct，Qwen3-32B）の出力の例．Adequacy列の “✓”，△，
および “7” は，Adequacy の観点でそれぞれ翻訳結果が妥当であること，一部不適切な
点があること，不適切であることを意味する（Fluencyについては不問）．不適切という
判断の根拠に当たる個所を赤字で示した（判断根拠が訳抜けの場合，特に修飾なし）．

翻訳モデルは “subscription (service)”と適切な訳語を出力
した（ただし，3モデルとも “まとめて”に当たる訳が欠落
している）．

5. おわりに
本稿では，日本語ソーシャルメディア投稿を用いた日英・

日中機械翻訳評価のための対訳データセットWRIME-MT

の構築と評価について報告した．WRIME-MTを用いて，

多言語および日本語中心のオープンモデルの翻訳精度を評価
したところ，GemmaX2-28-9B，Sarashina-2.2-3B-Instruct

および Qwen3（8B 以上）が両言語方向で高い翻訳精度
を示した．また，機械翻訳の前段タスクとして逸脱的表
記の正規化について検証したところ，Sarashina-2.2-3Bに
基づく高精度な正規化モデルを用いた場合，翻訳精度が
低程度～高程度であった複数の翻訳モデルで，翻訳精度
が向上することを示した．ただし，逸脱的表記に頑健な
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Sarashina-2.3-3B-Instructでは，自動正規化の有効性は確
認できず，正規化精度に改善の余地があることがわかった．
また，逸脱的表記以外の現象では，事例分析から，固有名
や略語・スラングについて翻訳エラーが生じることを確認
した．
今後の方向性として，逸脱的表記やその他の逸脱的現象

に対する言語モデルの頑健性・多言語処理能力を向上させ
る研究が考えられる．たとえば，原言語同士または原言語・
目標言語の疑似対訳や，人手作成された正規化データセッ
トを用いたモデルの事後学習が有効である可能性がある．
また，固有名や略称・スラングについては，新出の表現へ
の対応が重要となるため，エンティティリンキングや検索
拡張生成 [51]などの戦略が有望と考えられ，今後検証を行
いたい．

研究の限界 本データセットに収録された投稿は著者 1

名が選択したものであり（3.1 節），選択が恣意的である
ことは否定できない．今後，ランダムまたは別の作業者に
よって選択された投稿を追加し，今回の実験結果（4節）
と，翻訳モデル評価結果の傾向が同様となるかを確認した
い．また，本データセットにおける言語情報は著者 1名が
付与したものである（3.2節）．今後，データセットを拡張
し，複数のアノテータがアノテーションを行った際の一致
率を計測することを検討している．

謝辞 翻訳作業の仕様定義に関して助言・ご協力いただ
いた藤田篤氏，Benjamin Marie氏に感謝いたします．
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付 録
A.1 実験設定の詳細
実験に用いた事前学習モデルを表 A·1に示す．翻訳モデ

ルの推論では，decoder-onlyモデルについて表 A·2に示す
プロンプトを使用した．“{tgt lang}”は目標言語の文字列
（日本語プロンプトでは “英語”または “中国語”，英語プロン
プトでは “English”または “Chinese”），“{src text}”は翻
訳対象の原文を挿入するプレースホルダを表す．encoder-

decoderおよび decoder-onlyモデル共通で，ハイパーパラ
メタは num beams=1で greedy search（do sample=False）
を用いた．Qwen3モデルでは，non-thinkingモードを適用
した．また，モデルの入力や各評価指標のスコア計算時に
用いたテキストには，入力前に NFKC正規化を適用した．

Hugging Face ID

ku-nlp/deberta-v2-large-japanese-char-wwm

sbintuitions/sarashina2.2-3b

facebook/nllb-200-3.3B

Unbabel/TowerInstruct-13B-v0.1

haoranxu/X-ALMA-13B-Group6

ModelSpace/GemmaX2-28-9B-v0.1

SakanaAI/TinySwallow-1.5B-Instruct

sbintuitions/sarashina2.2-0.5b-instruct-v0.1

sbintuitions/sarashina2.2-1b-instruct-v0.1

sbintuitions/sarashina2.2-3b-instruct-v0.1

sbintuitions/sarashina2-7b

sbintuitions/sarashina2-70b

tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2

tokyotech-llm/Llama-3.3-Swallow-70B-Instruct-v0.4

Qwen/Qwen3-1.7B

Qwen/Qwen3-4B

Qwen/Qwen3-8B

Qwen/Qwen3-14B

Qwen/Qwen3-32B

表 A·1 実験において正規化（上段）・翻訳（下段）モデルとして利
用した事前学習モデル．

Lang Prompt

ja 次の日本語のテキストを {tgt lang} に翻訳してく
ださい。最後の日本語テキストに対する翻訳のみ出
力し、改行文字（”\n”）は出力しないでください。
\n\nJapanese:\n{src text}\n{tgt lang}\n

en Translate the following Japanese text into

{tgt lang}. Output only the transla-

tion of the final Japanese text without

including any newline characters (”\n”).
\n\nJapanese:\n{src text}\n{tgt lang}\n

表 A·2 Decoder-only モデルで使用した日本語および英語プロン
プト.
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