Contextualized Context2vec
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Lexical Substitution Task

Lexical Substitution Task [1, 2] w approach1 : context2vec [3]
— Generates context embeddings using the whole sentence.

. and you are required to listen hard. » € Uses simple word embeddings.

One event in particular hits the platoon hard ...

* The same word might have different meanings.
* Requires considering the meaning of the word in the context.

approach2 : DMSE [4]

Generates contextualized word embeddings by assigning
multiple embeddings to one word.

€ Considers only a single word as a context.

Proposed Method

Fusion of DMSE and context2vec Rank in order of cosine similarity of target and candidates.
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New Dataset: CEFR-LP DMSE (Spaxc)  try (0), move (1), proceed (1), leave (0), be (0), ...
c2v proceed (1), run (0), start (4), move (1), take (0), ...

New dataset for Lexical Substitution. c2v + DMSE (S.,,,) start (4), proceed (1), move (1), run (0), take (0), ...

(http://www-bigdata.ist.osaka-u.ac.jp/arase/pj/CEFR-LP.zip)

Success example 1: Dependency-word is underlined. The numbers in
parentheses show candidates’ weights.

 Expanded coverage of substitution candidates.

Extended based on CEFR-LS [5]. Target tender

* English proficiency levels (CEFR levels).

Al (lowest), A2, B1, B2, C1, C2 (highest) Rabbits often feed on young , tender perennial

context growth as it emerges in spring , or on young
transplants .

CEFR-LP LS-SE LS-CIC

DMSE (S, 05c) immature (0), young (0), great (1), soft (4), ...

target word 863 2,010 15,344 , , ,
, c2v delicate (1), immature (0), soft (4), painful (0), ...
candidates 14,259 34600 601,257 , ,
, c2v + DMSE (S .,,,) soft(4), delicate (1), immature (0), young (0), ...
paraphrasable candidates per target 10.0 3.48 6.65

. ST Success example 2
Basic statistics in CEFR-LP.

context ... From alchemy came the historical progressions that led Target hold
to modern chemistry : the isolation of drugs from natural context A doctor sat in front of me and held my hands .
______sources, metallurgy, and the dye industry .... DMSE (Smaxc) ~ put (0), lift (1), grasp (3), carry (0), ...
target progression [C1] c2v grasp (3), carry (0), take (1), keep (0), ...
candidate block [B1] (0), advancement [B2] (8), break [A2] (1), ... c2v + DMSE (S..,,) take (1), carry (0), keep (0), lift (1), ...
Example of CEFR-LP. A Failed example caused by incorrect dependency-word (sat) selection.
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