Contextualized *Context2vec*

Kazuki Ashihara[†], Tomoyuki Kajiwara[†], Yuki Arase[†], Satoru Uchida[‡]

+ Osaka University, + Kyushu University

{ashihara.kazuki, arase}@ist.osaka-u.ac.jp, kajiwara@ids.osaka-u.ac.jp, uchida@flc.kyushu-u.ac.jp

Lexical Substitution Task

Lexical Substitution Task [1, 2]

... and you are required to listen hard.

One event in particular hits the platoon hard ...

badly

- The same word might have different meanings.
- Requires considering the meaning of the word in the context.

approach1 : *context2vec* [3]

Generates context embeddings using the whole sentence. **X** Uses simple word embeddings.

approach2 : DMSE [4]

- Generates contextualized word embeddings by assigning multiple embeddings to one word.
- Considers only a single word as a context.

Proposed Method

- context2vec [3]
- Pre-training of target word embedding.
- *DMSE* [4]
- Contextualizes words using dependent words.

Experiments

77.2

74.9 75.3 75.6

CEFR-LP

71.1

52.9

50.0 51.0

LS-CIC [2]

Rank in order of cosine similarity of target and candidates.

• Pre-training of parameter of LSTM.

(dependency-word)

LSTM parameters and pre-trained word embeddings are fixed.

3.48

6.65

Examples of Output

LS-SE [1]

45.0

40.0

Target	go	
context	, explain the basic concept and purpose and <u>get</u> it going with minimal briefing .	
DMSE (S_{maxc})	try (0), move (1), proceed (1), leave (0), be (0),	
c2v	proceed (1), run (0), start (4), move (1), take (0),	
$c2v + DMSE(S_{can})$	start (4), proceed (1), move (1), run (0), take (0),	
Success example 1: <i>Dependency-word</i> is <u>underlined</u> . The numbers in parentheses show candidates' weights.		

Target	tender
context	Rabbits often feed on young , tender perennial <u>growth</u> as it emerges in spring , or on young transplants .
DMSE (S_{maxc})	immature (0), young (0), great (1), soft (4),
c2v	delicate (1), immature (0), soft (4), painful (0),
$c2v + DMSE(S_{can})$	soft (4), delicate (1), immature (0), young (0),

New Dataset: CEFR-LP

New dataset for Lexical Substitution.

(http://www-bigdata.ist.osaka-u.ac.jp/arase/pj/CEFR-LP.zip)

- Expanded coverage of substitution candidates. Extended based on CEFR-LS [5].
- English proficiency levels (CEFR levels). A1 (lowest), A2, B1, B2, C1, C2 (highest)

	CEFR-LP	LS-SE	LS-CIC
target word	863	2,010	15,344
candidates	14,259	34,600	601,257

paraphrasable candidates per target 10.0

Success example 2

Basic statistics in CEFR-LP.

... From alchemy came the historical **progressions** that led context to modern chemistry : the isolation of drugs from natural sources, metallurgy, and the dye industry....

progression [C1] target

block [B1] (0), advancement [B2] (8), break [A2] (1), ... candidate

Example of CEFR-LP.

[References]

[1] McCarthy et al., 2007, "SemEval-2007 Task 10: English Lexical Substitution Task," In Proc. of SemEval, pp. 48-53. [2] Kremer et al., 2014, "What Substitutes Tell Us - Analysis of an "All-Words" Lexical Substitution Corpus," In Proc. of EACL, pp. 540-549.

[3] Ashihara et al., 2018, "Contextualized Word Representations for Multi-Sense Embedding," In Proc. of PACLIC, pp. 28-36.

Target	hold	
context	A doctor <u>sat</u> in front of me and held my <u>hands</u> .	
DMSE (S_{maxc})	put (0), lift (1), grasp (3), carry (0),	
c2v	grasp (3), carry (0), take (1), keep (0),	
$c2v + DMSE(S_{can})$	take (1), carry (0), keep (0), lift (1),	
A Failed average a by incomment demondance would be that a		

A Failed example caused by incorrect *dependency-word* (sat) selection.

[4] Melamud et al., 2016, "context2vec: Learning Generic Context Embedding with Bidirectional LSTM," In Proc. of CoNLL, pp. 51-61.

[5] Uchida et. al., 2018, "CEFR-based Lexical Simplification Dataset," In Proc. of LREC, pp. 3254-3258. [6] Peters et al., 2018, "Deep Contextualized Word Representations," In Proc. of NAACL, pp. 2227-2237.