RUSE: Regressor Using Sentence Embeddings

<u>Hiroki Shimanaka</u> † Tomoyuki Kajiwara †‡ Mamoru Komachi † <u>shimanaka-hiroki@ed.tmu.ac.jp</u> †: Tokyo Metropolitan University ‡: Osaka University

1. Abstract & Introduction

- Most metrics in WMT are obtained by computing based on character N-grams or word N-grams, so they can exploit only limited information for segment-level MTE. Those models make wrong evaluations on sentences with similar meanings but different expressions.
- In this study, we propose a segment-level MTE metric using universal sentence embeddings capable of capturing semantic information that cannot be captured by surface layers.
- Our metric achieves a state-of-the-art performance in both segment- and system-level metrics tasks with embedding features only.

Example:		Metrics	Score	Ranking		
System Output:	This is not a major issue	Human	0.892	32/560		
Reference:		Blend	- 0.0734	423/560		
		RUSE	0.554	60/560		

2. RUSE: Regressor Using Sentence Embeddings

Our metric is a regression model trained using human evaluation score with pre-trained universal sentence embeddings.

Figure 2: Outline of Quick-Thought

Figure3: Outline of RUSE

3. Experimental Setting

4. Experimental Results

 Universal Sentence Embeddings
InferSent (IS) [Conneau et al., 2017]
Training data: SNLI Corpus, MultiNLI Corpus
Dimension: 4,096
Quick-Thought (QT) [Logeswaran and Lee, 2018]
Training data: Toronto-Books Corpus, UMBC corpus
Dimension: 4,800
Universal Sentence Encoder (USE) [Cer et al., 2018]
Training data: various web sources, SNLI Corpus
Dimension: 512
Regressor for MTE We use MLP (Chainer) for regressor.

Human evaluation data

We use DA human evaluation data in WMT.

- Train: WMT15 and WMT16 (5,360 instances)
- Development: 1/10 of train data
- Test: WMT17 (for each to-English language pairs:

Table2: Segment-level Kendall's formulation of metric scores and DA scores in WMT18										
	cs-en	de-en	et-en	fi-en	ru-en	tr-en	zh-en	RW		
sentBLEU	0.233	0.415	0.285	0.154	0.228	0.145	0.178	0.077		
BLEND [Ma et al., 2017]	0.322	0.492	0.354	0.226	6 0.290	0.232	0.217	0.434		
YiSi-1 [Lo, 2018]	0.319	0.488	0.351	0.231	0.300	0.234	0.211	0.422		
YiSi-1_SRL [Lo, 2018]	0.317	0.483	0.345	0.237	0.306	0.233	0.209	0.403		
RUSE with IS + QT + USE	0.347	0.498	0.368	0.273	0.311	0.259	0.218	0.713		
Table3: System-level Pearson correlation of metric scores and DA scores in WMT18										
	cs-en	de-en	et-en	fi-en	ru-en t	tr-en z	zh-en	RW		
BLEU [Papineni et al., 2002]	0.970	0.971	0.986	0.973	0.979 0	.657	0.978	0.332		
BEER [Stanojević et al ., 2015]	0.958	0.994	0.985	0.991	0.982 0	0.870	0.976	0.604		
BLEND [Ma et al., 2017]	0.973	0.991	0.985	0.994	0.993 0	.801	0.976	0.704		
YiSi-1_SRL [Lo, 2018]	0.965	0.995	0.981	0.977	0.992 0	.869 (0.962	0.597		

- Our RUSE metric achieves a state-of-the-art performance in all to-English language pairs on WMT18 segment-level metrics tasks.
- Based on the results of our work, we expect that the MTE metric will be further improved using these better universal sentence embeddings. Future work is experiment using the datasets for from-English language pairs and analysis of this metric.

Hiroki Shimanaka Tomoyuki Kajiwara Mamoru Komachi, RUSE: Regressor Using Sentence Embeddings for Machine Translation Evaluation, EMNLP 2018 THIRD CONFERENCE ON MACHINE TRANSLATION (WMT18), November 1st, 2018