Improving Japanese-to-English Neural Machine Translation by Paraphrasing the Target Language

Tokyo Metropolitan University <u>Yuuki Sekizawa</u>, Tomoyuki Kajiwara, Mamoru Komachi sekizawa-yuuki@ed.tmu.ac.jp

Overview: vocabulary restriction in NMT

- NMT has a high computational cost
 - NMT restricts vocabulary to frequent words
 - infrequent words being treated as out-of-vocabulary (OOV)
 - substituted with a special symbol such as "<unk>"
- byte pair encoding (BPE): to split to substrings
 - do not consider word meaning
 - may change sentence meaning
- proposed method
 - paraphrase infrequent words or phrases with frequent synonyms from the target side of the training corpus
 - reduce OOV in output while keeping sentence meaning

Related work: reducing OOV

- Luong et al. (2015)
 - translate OOV words with a corresponding word in the source sentence using a translation dictionary
 - only use correspondence of a source word
- Sennrich et al. (2015)
 - apply BPE to source and target corpora to split OOV words into units of frequent substrings
 - split words greedily without considering their meaning

Related work: using word similarity

• Li et al. (2016)

- substitute OOV words in training corpora with a similar in-vocabulary word as preprocessing steps
 - using cosine similarity and language model
- lose sentence meaning and degrades the adequacy
- might replace OOV words with similar but non-synonymous words since they used distributional similarity

example

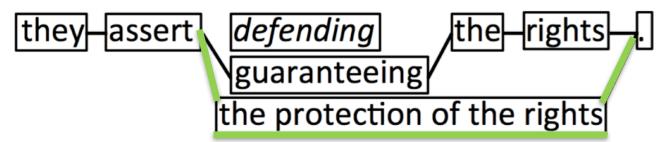
- Li et al.: "internet *surfing*" → "internet snowboard"
- ours: "internet *surfing*" \rightarrow "internet browser"

Proposed method

- paraphrase infrequent words or phrases with frequent synonyms on the target side of the training sentences
- advantage
 - consider word meaning by paraphrasing OOV
 - preserve sentence meaning while reducing OOV
 - combine related methods
 - treat NMT as a black box

Proposed method

- use a paraphrase lexicon that has paraphrase pairs annotated with a paraphrase score (PPDBscore)
 - combine PPDBscore and language model score (LM score)
 - λ (PPDBscore) + (1λ) (LMscore)



OOV: defending

• viterbi algorithm calculates the 2-gram language model score

Proposed method: paraphrasing iteratively

original: the *pedagogues* had *quarrels*. paraphrase first round : the *educators* had discussions. paraphrase second round : the teachers had discussions.

OOV: pedagogues, quarrels, educators

multi.: $pedagogues \rightarrow$ teachers, $quarrels \rightarrow$ discussions single: $quarrels \rightarrow$ discussions

when paraphrasing only once, *pedagogues* is <u>not paraphrased</u> to keep original meaning

Experiment: NMT Settings

- corpus
 - ASPEC (Japanese-to-English)
 - train: 827,503 (sentence length <= 40)
 - develop: 1,790 test: 1,812
 - tokenizer: mecab (IPAdic) for Ja, Moses script for En
- NMT model
 - system : OpenNMT-py (2 layers bi-LSTM)
 - batch size 64, epoch 20, embedding size 500, hidden size 500
 - dropout rate 0.3, optimizer SGD with learning rate 1.0
 - vocabulary size of source and target 30,000 respectively
- evaluation metric
 - BLEU, METEOR, a number of OOV in translated sentences

Experiment: paraphrasing settings

- paraphrase lexicon
 - PPDB 2.0 XXXL-size (Pavlick et al., 2015)
- language model
 - all sentences of the target side of ASPEC, 2-gram model

Experiment: comparison methods

- baseline: without any paraphrasing
- Luong et al.: replace OOV by translating corresponding source word.
- Sennrich et al.: apply BPE to reduce OOV
- Li et al.: replace OOV with the most similar word before training
- ours: paraphrase OOV with paraphrasing lexicon
 - a number of paraphrasing: {single, multi.}
 - a unit of paraphrasing: {word, phrase}
 - λ: {0, 0.25, 0.5, 0.75, 1}

Result: Japanese-to-English translation

method	BLEU↑	METEOR个	00V↓
baseline	25.70†	31.06	1,123
Luong et al. (dictionary replace)	25.87†	31.04	567
Sennrich et al. (BPE)	25.92*	31.50	0
Li et al. (similarity replace)	25.89*	31.10	832
proposed (multi. word, $\lambda = 0.5$)	26.45	31.62	638

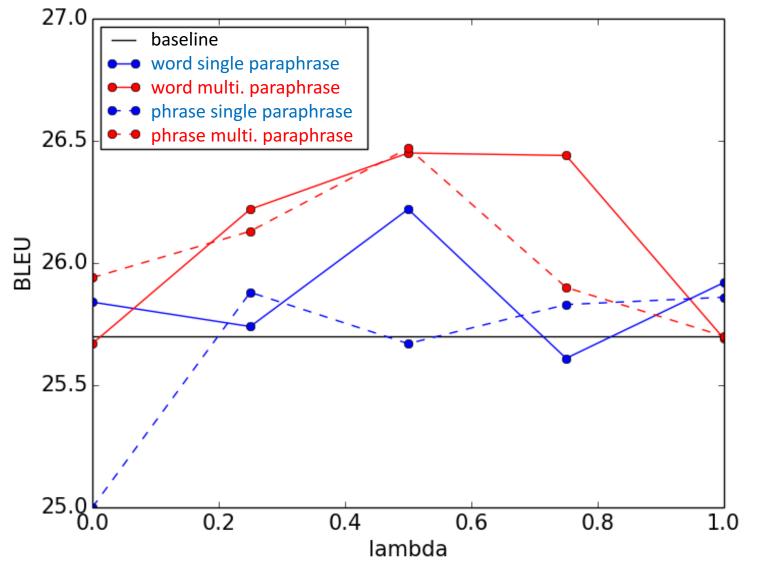
"+" and "*" indicate that the **proposed method significantly outperformed** the other methods at "p<0.01" and "p<0.05", respectively, using bootstrap resampling.

Related work reduced OOV and improved translation quality, however, our method can improve BLEU further.

Result: translation example

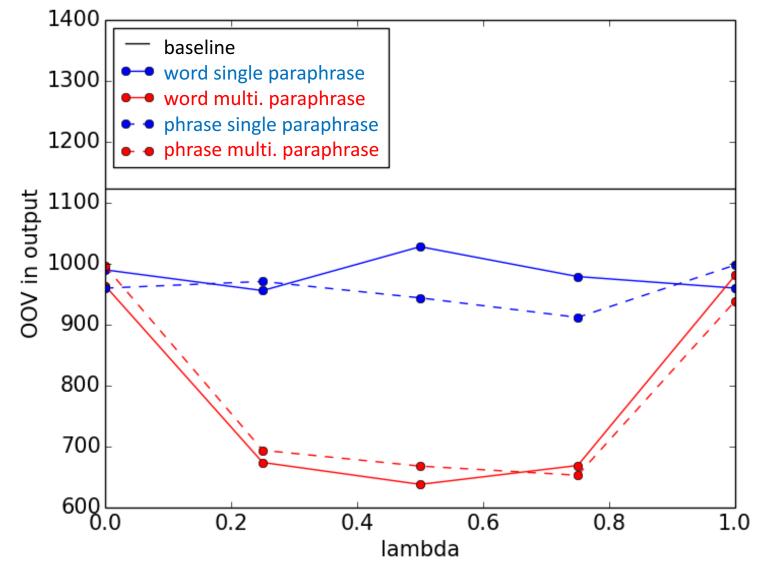
method	translation
source	ロックイン <u>アンプ</u> を使用すれば, ノイズを著しく減少できることを期待できる。
reference	with the lock - in <u>amplifier</u> used , significant reduction of the noise is expected .
baseline	it is expected that the noise can be reduced remarkably , if the <u><unk></unk></u> is used .
ours (multi. word, $\lambda = 0.5$)	it is expected that the noise can be remarkably decreased , if the amplifier is used .

Result: BLEU score of the proposed method



12

Result: a number of OOV terms in the output



Discussion

- Paraphrasing target(English) training corpus is effective.
 - Is paraphrasing target training corpus effective?
 - Is paraphrasing **English** training corpus effective?

Additional experiment

- We performed <u>English to Japanese</u> translation using PPDB: Japanese (Mizukami et al., 2014).
 - If other language pair translation performs similarly, paraphrasing **target** training corpus is effective

Using high quality lexicon is important

	En-to-Ja		Ja-to-En	
method	BLEU个	oov↓	BLEU↑	00V↓
baseline	33.91	1,003	25.70†	1,123
proposed multi. word, λ = 0.5	34.09	966	26.47	668

- We can improve translation quality by paraphrasing target corpus using paraphrase lexicon.
- The degree of improvement depends on quality of lexicon.
 - English PPDB2.0 is a **supervised** regression model.
 - Japanese PPDB is an **unsupervised** model.

Proposed method comparison

Ja → En	BLEU	METEOR
non paraphrase	25.70	31.06
source paraphrase	25.94	31.02
target paraphrase	26.45	31.62
both paraphrase	25.77	31.11

En → Ja	BLEU
non paraphrase	33.91
source paraphrase	33.68
target paraphrase	34.09
both paraphrase	33.63

Conclusion

- paraphrase infrequent words or phrases with frequent synonyms from the target side of the training corpus
 - reduce OOV in output while keeping sentence meaning
- achieved a statistically significant BLEU score improvement over baselines and reduce the OOV rate in output sentences