Contextualized Word Representations for Multi-Sense Embedding

Kazuki Ashihara⁺ Tomoyuki Kajiwara⁺ Yuki Arase⁺ Satoru Uchida[‡] +Osaka University ‡Kyushu University {ashihara.kazuki, arase}@ist.osaka-u.ac.jp, kajiwara@ids.osaka-u.ac.jp, uchida@flc.kyushu-u.ac.jp

Background

- Distributed word representations are used in many NLP tasks.
- Several word meanings are mixed in a representation.
- There are two approaches to generate multi-sense embeddings in order to distinguish each word senses.
 - To generate representations in advance [1][2]. (Our approach)
 - To generate representations from context [3].
- Previous studies generated multiple word representations using part of speech [1] or topic [2].

Lexical Substitution Task

This task requires to ...

- rank candidates.
- consider the meaning of the target word in the sentence.
- capture word senses.
 - TEXT ... you are carrying on two conversations at once and you are required to listen **hard**.

candidates closely (1), strongly (0), badly (0), carefully (4), ...

The task of Lexical Substitution

GAP calculates ranking accuracy by considering the weight of candidate.

Target	hard
TEXT1	you are carrying on two conversations at once and you are required to <u>listen</u> hard .

outputcarefully (4), intensively (0), closely (1), intently (1), ...TEXT2One event in particular <u>hits</u> the platoon **hard** : the death of its platoon leader, ...

Pre-training

- Lemmatize
- CBOW algorithm

Speakers," In Proc. of AAAI, pages 3761-3767.

Post-training

- Initialize using the pre-trained vectors
- Train each word sense

Evaluation Setting

Preprocessing

- 988M sentences from Wikipedia as a training dataset.
- Replace words with frequency of 200 or less to "(unk)" tag
- Parts of speech of the *context-word* were limited to the content word.

output badly (3), heavily (0), strongly (0), severely (1), firmly (0), ... Example outputs in a Lexical Substitution Task. The target words in the input are presented in **bold** and *context-words* are <u>underlined</u>.

- Output is different for each context.
- Ours ranked correct candidate words at the top.

(i.e. noun, verb, adjective and adverb)			-0.4 - Intensively	heavily	2D representation	
Baseline			-0.6 -	neaviry	of trained vectors	
model	in-house / ref.	overview	-0.8 -0.6 -0.4 -0.2 0.0	0.2 0.4 0.6 0.8	1.0	
CBOW	in-house	CBOW algorithm				
SGNS	ref. [2]	SGNS algorithm	Summary			
MSSG	ref. [2]	Generates multiple representations by clustering.	 We proposed a method that generates word representations of different senses using <i>context-words</i> as clues to distinguish word 			
POS	in-house	By POS				
TOPIC	ref. [2]	By topic				
ELMo[3]	in-house	By context	 The extensive evaluations confirmed the effectiveness of our method. 			
in-hou	se : Our in-house	implementation, ref.: Referred to the score from [2]				
[Reference] [1] Gustavo Henrique Paetzold and Lucia Specia. 2016. "Unsupervised Lexical Simplification for Non-Native			[2] Marzieh Fadaee, Arianna Bisazza, and Christof Monz. 2017. "Learning Topic-Sensitive Word Representations," In Proc. of ACL, pages 441-447. [3] Matthew F. Peters, Mark Neumann, Mobit Juver, Matt Gardner, Christopher Clark, Kenton Lee, and Luke			

[3] Matthew E. Peters, Mark Neumann, Mohit Tyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. "Deep Contextualized Word Representations," In Proc. of NAACL, pages 2227-2237.