スタイル変換のための 折り返し翻訳に基づく事前訓練

梶原 智之 大阪大学データビリティフロンティア機構

三浦 びわ 株式会社 Al Samurai

荒瀬 由紀 大阪大学大学院情報科学研究科

スタイル変換

Formality Transfer

- カジュアル: I LOOOVVVEEE this song SOOO Much!!!!!!
- フォーマル: I very much enjoy this song.

Text Simplification

- 難解: Alfonso Perez Munoz, usually referred to as Alfonso, is a former Spanish footballer, in the striker position.
- 平易: Alfonso Perez is a former Spanish football player.

入力文の意味を保持しつつ意味以外の情報(スタイル)を制御する

少資源問題

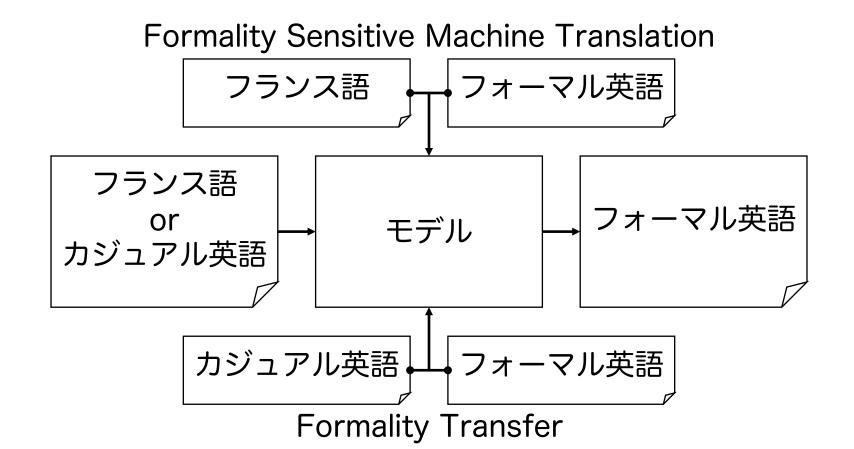
機械翻訳と同じ:パラレルコーパス上でseq2seqモデルを訓練する機械翻訳と違う:非常に小規模なパラレルコーパスしか利用できない

- 対訳データは日々の生活の中で大量に生産/蓄積される
- 単言語パラレルコーパスが自然に作られることは期待できない

機械翻訳	英語 – チェコ語	5,000万文対
1茂1水亩分亩八	英語 – ドイツ語	500万文対
スタイル変換(英語)	難解 – 平易	10万文対
	カジュアル – フォーマル	10万文対
スタイル変換(日本語)	難解 – 平易	5万文対
	カジュアル – フォーマル	0

先行研究:スタイル変換における少資源問題への対策

- ・ルールベースのデータ拡張 [Rao+ 2018]
- ・機械翻訳とスタイル変換のマルチタスク学習 [Niu+ 2018]



先行研究:他のスタイルや言語への拡張が困難

- ・ルールベースのデータ拡張 [Rao+ 2018]
 - → スタイルごとに人手でルールを書く必要がある
- ・機械翻訳とスタイル変換のマルチタスク学習 [Niu+ 2018]
 - → スタイルのラベル付き対訳データを利用できる状況は少ない

Formality Sensitive Machine Translation フランス語 フォーマル英語 フランス語 フォーマル英語 モデル カジュアル英語 凵 フォーマル英語 カジュアル英語 Formality Transfer

本研究:生コーパスを有効活用して少資源問題に対処

スタイル変換における理想的な言い換え

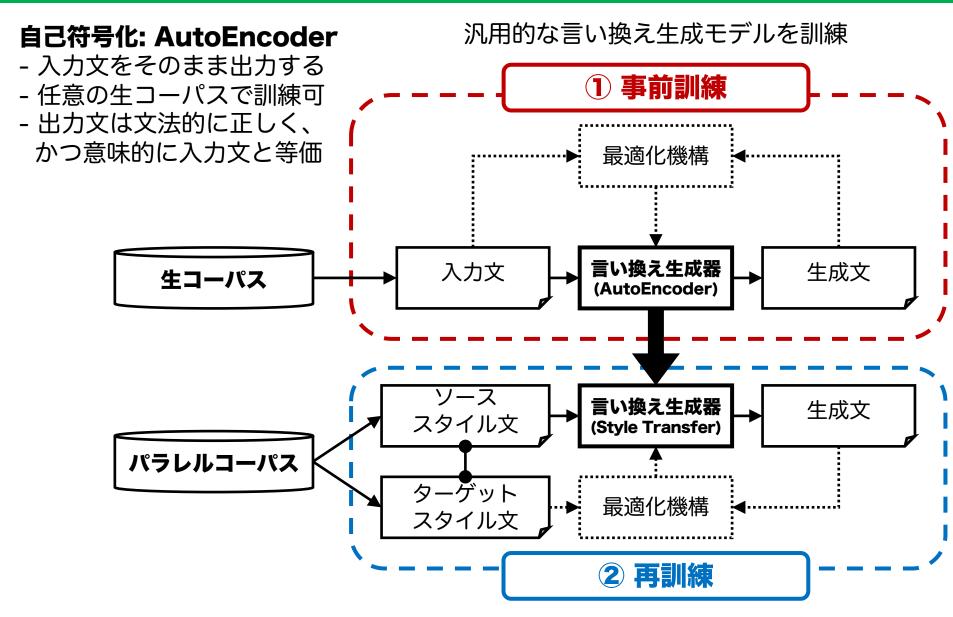
- 1. 出力文の**スタイル**が適切
- 2. 出力文が文法的に正しい
- 3. 入出力が**意味**的に等しい
- カジュアル: I LOOOVVVEEE this song SOOO Much!!!!!!
- フォーマル: I very much enjoy this song.

本研究:生コーパスを有効活用して少資源問題に対処

- スタイル変換における理想的な言い換え
 - 1. 出力文の**スタイル**が適切
 - 2. 出力文が**文法**的に正しい
 - 3. 入出力が**意味**的に等しい
- スタイルに依存しない

- ① 事前訓練:生コーパスを用いて意味と文法に関する訓練
 - 入力文に対して文法的かつ意味的に等価な文を出力する
 - つまり、汎用的な言い換え生成モデルを訓練
- ② 再訓練:パラレルコーパスを用いてスタイルに関する訓練
 - 入力文に対して目的のスタイルを付与する
 - ・つまり、大量の変換規則からスタイルに適した規則を選出

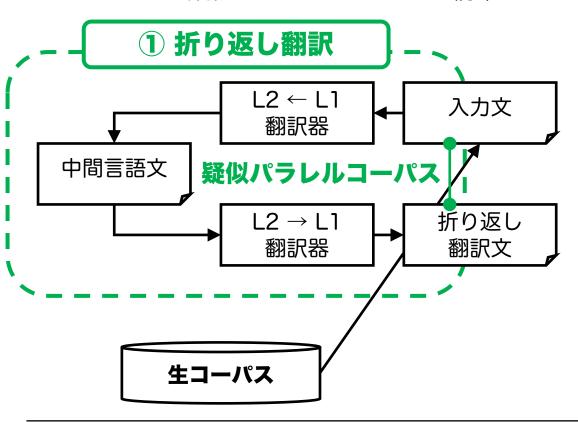
提案手法1:自己符号化を用いる事前訓練 (AE) + 再訓練



スタイルに特化した言い換え生成モデルに調整

提案手法2:折り返し翻訳を用いる事前訓練 (RT) + 再訓練

生コーパスから疑似パラレルコーパスを構築



入力文

I love watching the show.

Thanks for asking the question.

The key to a successful relationship is good communication.

折り返し翻訳文

I love to see the show.

Thank you for the question.

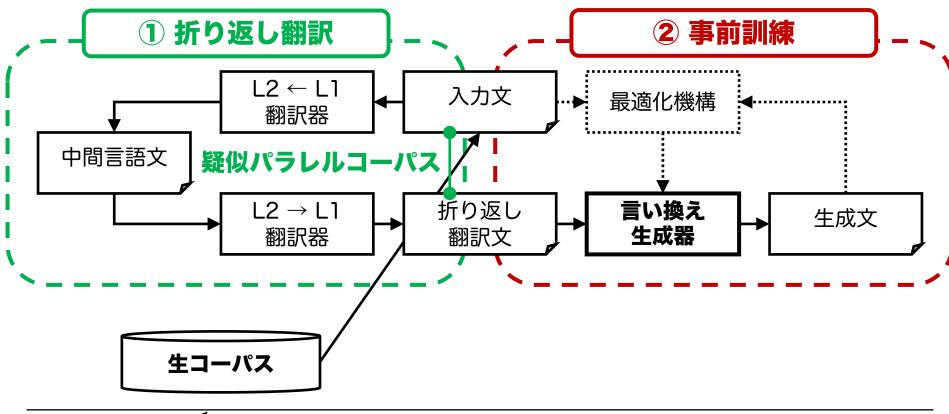
Good communication is the key to a successful relationship.

-C

提案手法2:折り返し翻訳を用いる事前訓練 (RT) + 再訓練

生コーパスから疑似パラレルコーパスを構築

汎用的な言い換え生成モデルを訓練



I love watching the show.

入力文

Thanks for asking the question.

The key to a successful relationship is good communication.

折り返し翻訳文

I love to see the show.

Thank you for the question.

Good communication is the key to a successful relationship.

] ((

提案手法2:折り返し翻訳を用いる事前訓練 (RT) + 再訓練

生コーパスから疑似パラレルコーパスを構築 汎用的な言い換え生成モデルを訓練 ① 折り返し翻訳 2 事前訓練 L2 ← L1 入力文 最適化機構 翻訳器 中間言語文 疑似パラレルコーパス 折り返し $L2 \rightarrow L1$ 言い換え 生成文 翻訳器 生成器 翻訳文 ソース 言い換え 生成文 生コーパス スタイル文 生成器 ターゲット 最適化機構 パラレルコーパス スタイル文 3 再訓練

スタイルに特化した言い換え生成モデルに調整

実験設定

スタイル変換

・データ: Yahoo Answersから抽出された**カジュアルな英文**

とフォーマルな英文のパラレルコーパス (GYAFC)

モデル:Sockeye上でRNN・CNN・SANの各モデルを構築

		Informal	→ Formal	Formal -	> Informal
	訓練	 検証	評価	 検証	 評価
Entertainment & Music (E&M)	52,595	2,877	1,416	2,356	1,082
Family & Relationships (F&R)	51,967	2,788	1,332	2,247	1,019

折り返し翻訳

生コーパス: Yahoo Answersから300万文

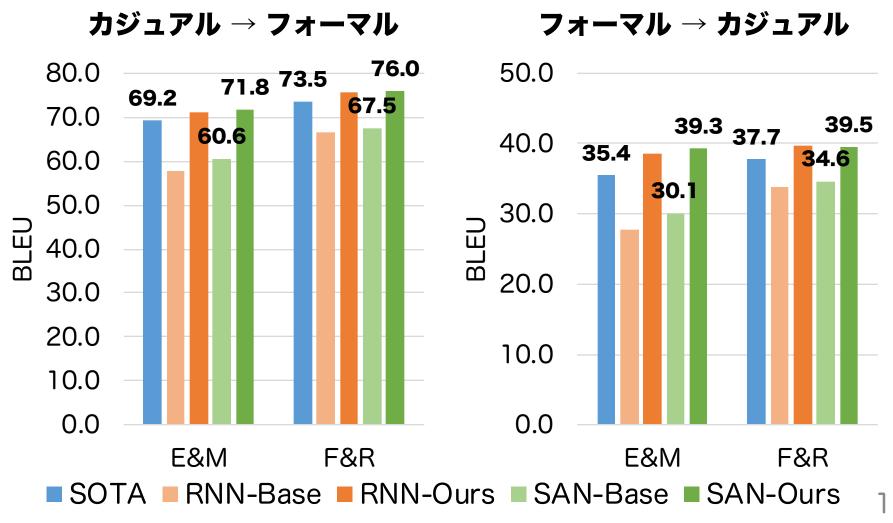
・ 翻訳器:スタイル変換器と同じ設定のSANモデル

データ:WMT2017の英独タスクから450万文対

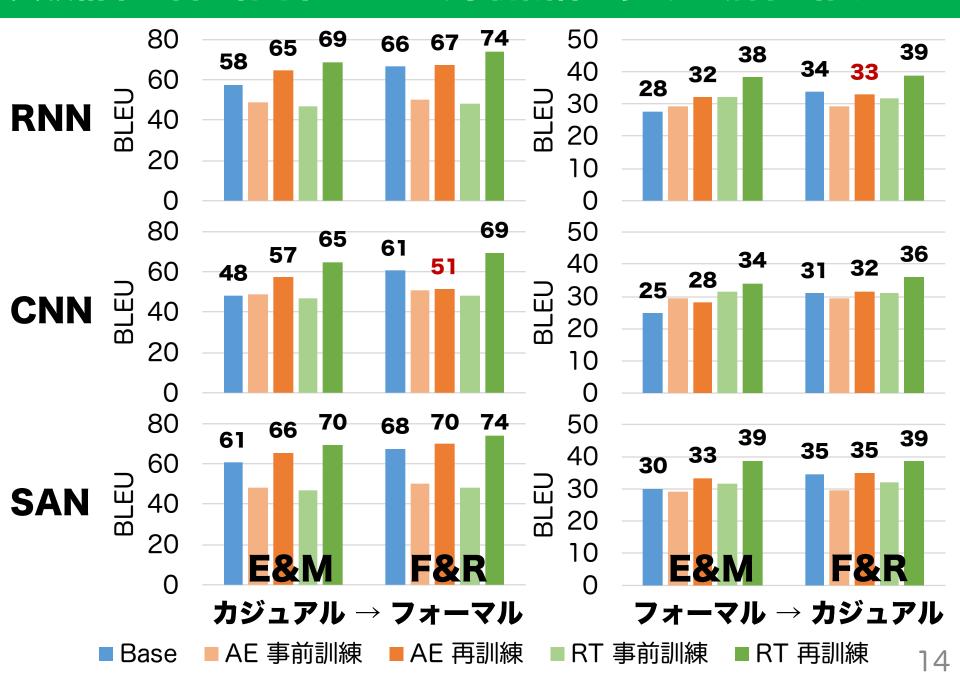
BLEU	英語 → ドイツ語	ドイツ語 → 英語
WMT2017best	26.6	33.5
我々の翻訳器	27.6	33.8

実験結果:折り返し翻訳に基づく提案手法が最高性能を更新

スタイルにもドメインにもベースのモデルにも依存せず 転移学習によって常に大幅に言い換え生成の性能を改善



実験結果:自己符号化に基づく事前訓練も多くの場合に有効



実験結果:スタイル変換の実例

カジュアル → フォーマル

- 入力文 I LOOOOOVVVVVVEEE this song SOOO Much!!!!!!
- 参照文 I very much enjoy this song.
- Ours I love this song very much.

先行研究ではカジュアルな表現が残る

- Rao-18 I loovvvvvveee this song so Much.
- Niu-18 I really enjoy VVVVVVVEEE this song.

フォーマル → カジュアル

- 入力文 I thoroughly enjoy the hair bands of the 1980s.
- 参照文 I love the old hair bands of the 80's!
- Ours I love the hair bands of the 80's.

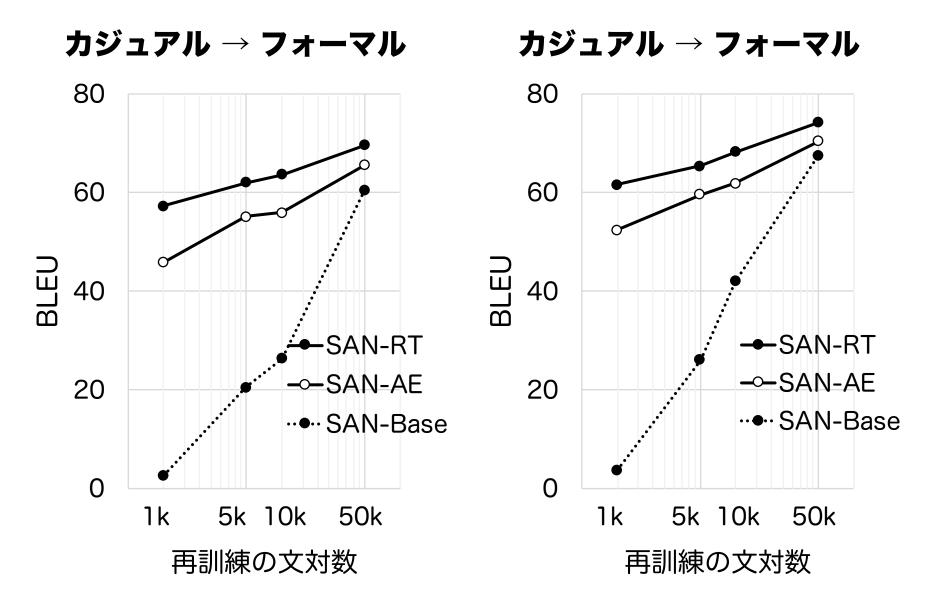
先行研究では意味が変わってしまう

- Rao-18 I just like the hair of the brids.
- Niu-18 | love the 80's hair.

分析と考察

- 1. 少資源設定の分析
- 2. 逆翻訳と折り返し翻訳の比較
- 3. その他のスタイルにおける分析

少資源設定の分析:1,000文対でも高品質なスタイル変換を実現



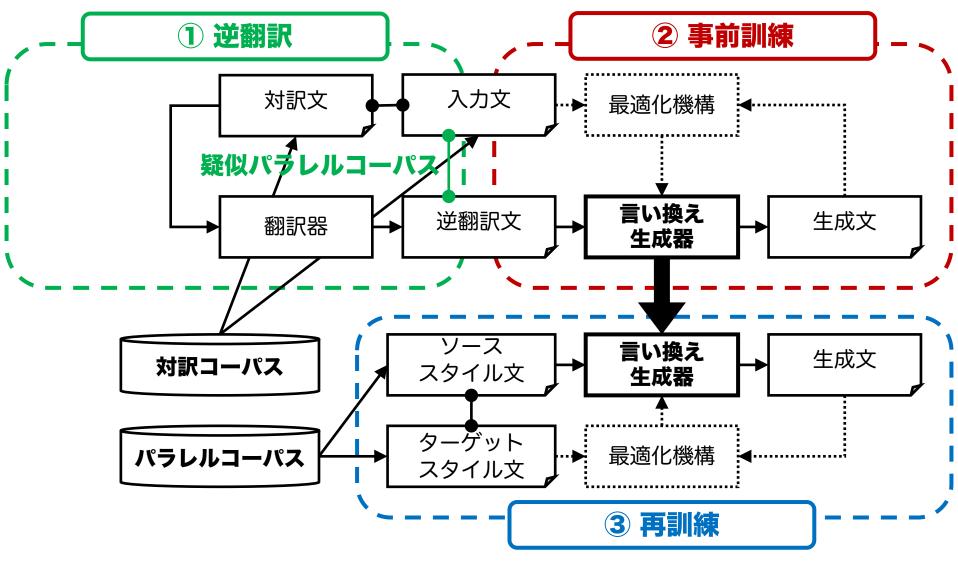
逆翻訳との比較:折り返し翻訳に基づく事前訓練 + 再訓練 (再掲)

汎用的な言い換え生成モデルを訓練 生コーパスから疑似パラレルコーパスを構築 ① 折り返し翻訳 ② 事前訓練 L2 ← L1 入力文 最適化機構 翻訳器 中間言語文 疑似パラレルコーパス 折り返し $L2 \rightarrow L1$ 言い換え 生成文 生成器 翻訳器 翻訳文 ソース 言い換え 生成文 生コーパス スタイル文 生成器 ターゲット 最適化機構 パラレルコーパス スタイル文 3 再訓練

スタイルに特化した言い換え生成モデルに調整。

逆翻訳との比較:折り返し翻訳を逆翻訳に変更

対訳コーパスから疑似パラレルコーパスを構築 汎用的な言い換え生成モデルを訓練



スタイルに特化した言い換え生成モデルに調整。

逆翻訳との比較:逆翻訳も有効だが、折り返し翻訳の方が良い

カジュアル → フォーマルのBLEU

	E&M	F&R
SAN-Base	60.57	67.52
SAN-AE(自己符号化)	65.57	70.34
SAN-BT(逆翻訳)	69.06	73.39
SAN-RT(折り返し翻訳)	69.58	74.19

自己符号化 << 逆翻訳

→ 事前訓練において、多様な同義表現を学習することが重要

逆翻訳 < 折り返し翻訳

- → 生コーパスであれば、in-domainのデータを利用できるため
- ※ 対訳コーパスは任意のドメインにおいて大規模に利用できるわけではない

その他のスタイルにおける分析:丁寧さ以外のスタイルでも有効

テキスト平易化(難解→平易)

- 訓練データ 1:WikiSmall (WikipediaとSimple Wikipediaの10万文対)
- 訓練データ 2: WikiLarge (WikipediaとSimple Wikipediaの30万文対)
- 検証/評価: Wikipediaを人手で平易化したマルチリファレンス

難解 → 平易のSARI		
	WikiSmall	WikiLarge
SAN-Base	34.19	34.58
SAN-RT	35.46	35.99

先行研究との関係

- スタイル変換におけるデータ拡張 [Rao+ 2018]
- スタイル変換のためのマルチタスク学習 [Niu+ 2018]
 - → 人手や特殊なデータに頼るため他のスタイルへの拡張が困難
 - √ 我々は生コーパスを用いるため他のスタイルへの拡張が容易
 - √ 対訳コーパスは主要な言語では大規模に利用できる
- 機械翻訳におけるドメイン適応 [Chu+ 2018]
- 対話応答生成における転移学習 [Akama+ 2017]
 - **→ 異なるドメインの大規模パラレルコーパスの存在を仮定**
 - √ 本タスクでは状況が違うため生コーパスに基づく手法を提案
- 教師なしスタイル変換 [Luo+ 2019]
 - → 小規模とは言え、教師あり手法の方が顕著に高い性能を達成
 - ✓ 大規模な生コーパスと小規模なパラレルコーパスを 組み合わせて高品質なスタイル変換を実現

まとめ:スタイル変換のための折り返し翻訳に基づく事前訓練

- カジュアル → フォーマルの言い換えにおける少資源問題を解消
- 疑似データ(生コーパス)での事前訓練 + 真のデータでの再訓練
- ・ スタイル, ドメイン, モデル構造に依存せず常に大幅に性能改善
- 真のデータが 1k 文対しかない状況でも高品質な言い換えを実現

今後の課題

- データが増えても解けない問題を見つける
- 価値ある疑似データの性質を明らかにする*1
 - ▶ 今のところ、自己符号化<逆翻訳<折り返し翻訳</p>
 - ▶ 真のデータに不足している情報を疑似データに入れる*2
- *1 Edunov et al. (EMNLP-2018)
 Understanding Back-Translation at Scale.
 - 機械翻訳データ拡張の逆翻訳では、ビームサーチよりもサンプリングが良い
- *2 Fadaee and Monz (EMNLP-2018)

 Back-Translation Sampling by Tard

Back-Translation Sampling by Targeting Difficult Words in NMT. 対訳コーパスの低頻度語を積極的に疑似コーパスに含めると良い