Semantic Features Based on Word Alignments for Estimating Quality of Text Simplification
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Quality Estimation for Text Simplification Motivation

Data
Training: 505 sentence pairs
Test: 126 sentence pairs

Four different evaluation criteria
Grammatically
Meaning preservation
Simplicity
Overall quality

3-class judgments for each criterion
{good, ok, bad}

Neural networks are rather unstable because of the difficulty of
training on a limited amount of data.

MT metrics are incapable of properly capturing deletions and
paraphrases that are prevalent in text simplification.

— |n order to properly account for the surface-level inequivalency
occurring in text simplification, we examine semantic similarity
features based on word embeddings and paraphrase lexicons.

Semantic Features Based on Word Alignments
1. Additive Embeddings Similarity
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Evaluation using QATS dataset

Classifiers based on our features greatly outperformed the state-of-the-art methods
in terms of Simplicity (Random Forest Classifier) and Overall quality (SVM Classifier).
MT-baseline features do not help ours further.

— Word embeddings are superior to surface-level processing in finding corresponding words.

Svst Grammaticality Meaning Simplicity Overall
yStem At ElL FT | AT El FT | At EL F? | AT ElL F?
Majority-class 76.2 183 659 | 579 29.0 425 | 5656 294 39.7 | 43.7 28.2 26.5
Best score on QATS-2016 (Stajner+2016)| 76.2 17.1 71.8 | 69.1 20.2 68.1 | 57.1 250 564 | 524 258 48.6
SVM Classifiers MT-baseline: BLEU, METEOR, TER, WER
MT-baseline 76.2 183 659 66.7 20.2 062.7 | 50.8 26.2 48.3 | 38.1 41.7 37.5
Our SVM 76.2 183 659 | 6.1 222 583 |B57.1 278 439 579 234 57.7
Our SVM w/ MT-baseline 76.2 183 659 [66.7 21.0 63.7 57.1 270 469 | 476 29.0 46.8

Neural Network Classifiers SimpleNets-MLP: multi-layer perceptron based on language model features

SimpleNets-MLP (pPaetzold and Specia, 2016)
Our MLP
Our MLP w/ MT-baseline

74.6 17.1 68.8
68.3 24.6 0©606.9
63.5 26.6 63.8

65.9 21.0 63.5
59.5 254 564
64.3 21.4 062.7

53.2 27.0 49.8

59.5 234 58.2
52.4 26.2 53.2

38.1 32.5 33.7

52.4 25.8 51.9
46.0 31.8 455

Random Forest Classifiers

SMH: based on automatic evaluation metrics and QE features for MT

SMH-RandForest (Stajner+ 2016) 75.4 175 71.8| 659 20.6 644 524 27.8 53.0 44 .4 31.8 44 .5
Our RandForest 76.2 183 659 [ 66.7 23.0 632 63.5 21.8 59.8 | 51.6 26.6 48.3
Our RandForest w/ MT-baseline 76.2 183 659 | 619 246 576  62.7 226 5b6.1 | 46.0 29.0 436
Ablation on Accuracy G M S O o Correlation length label
ALL 76.2 65.1 57.1 579 BLEU -0.765 0.245
-AES 76.2 6b.1 57.1 5b7.1 o8 METEOR -0.617 0.257
-MAS (Orig, Simp) | 76.2 579 556 564 0.6- ‘ v BLEU WMD 0.788 -0.215
-MAS (Simp, Orig) | 76.2 64.3 57.1 548 § | ‘M | 0 AAS 0335 0.318
-PAS 76.2 579 556 b3.2 41 03‘?‘ c{!“%.:’ ¢ { * Humanlabel HAS 0.061 -0.050
_DWE 762 57.9 556 51.6 | ..odlle et
“WMD 76.2 579 556 46.8 ' SRR HAS was not biased by the length difference
_AAS 76.2 579 556 452 0.0 ****************:*********”** * +' | almost at all, and AAS and highly correlated
-HAS 76.2 579 556 35.7 " bifference of sentence lengtn - With the manually-labeled quality.

Example: A sentence pair judged “good” in terms of overall quality. HAS reaches 0.85, while BLEU is 0.54.

Original:  While historians concur that the result itself was not manipulated, the voting process was neither free nor secret.
— _— |
. — 1 . //////Z///marian Alignment
Simple:  Most historians agree that the result was not fixed, but the voting process was neither free nor secret.
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