Tiny Word Embeddings Using Globally Informed Reconstruction Sora Ohashi, Mao Isogawa, Tomoyuki Kajiwara, Yuki Arase (Osaka University) ohashi.sora@ist.osaka-u.ac.jp

Background: Word Embedding Reconstruction

- Pre-trained word embeddings require a large • Existing reconstruction models only consider local information, i.e., the original embedding memory space The technique of word embedding reconstruction • Our method consider the similarity among words makes the memory space smaller as global information A reconstruction model estimates an embedding of We train a reconstruction model with both of the an input word according to subword embeddings. local reconstruction loss and globally informed The model is trained with reconstruction loss to reconstruction loss. **Globally Informed Reconstruction Loss Local Reconstruction Loss** $L = L_{local} + L_{global}$ $L_{local} = \frac{1}{d_w} \|\hat{\boldsymbol{e}}_w - \boldsymbol{e}_w\|^2$ $L_{global} = \frac{1}{|W|} \sum_{v \in W} \left(\cos(\hat{\boldsymbol{e}}_{w}, \boldsymbol{e}_{g}) - \cos(\boldsymbol{e}_{w}, \boldsymbol{e}_{g}) \right)^{2}$ e_w : Original word embedding d_w : Dimension of pre-trained word embeddings \hat{e}_{w} : Reconstructed word embedding e_w : Original word embedding \hat{e}_{w} : Reconstructed word embedding Sample 10 words from the training set to compute the global loss • Half of the sampled words are the nearest **1. Subword Tokenization** neighbor of a target word Tokenize the input word into subwords Nearest Neighbors **2. Reconstruct** Generate word embedding COS using neural networks L_{global} **3. Mimick** Train the model to generate a L_{local} COS word embedding by mimicking the original embeddings

mimick the original word embeddings.

Approach: Globally Informed Reconstruction

Random Fig 2: Globally informed reconstruction loss

Reconstructed Word Embeddings

L_{local}

Pre-trained Word Embeddings

Evaluation: Word Similarity Estimation Task

Datasets

Rubenstein-Goode Miller-Charles WordSim-353 MEN Stanford Rare Wo

The memory space was reduced to 0.5% while 86% of the quality was preserved

Character-RNN + Global Loss Character-CNN + Global Loss Bag of N-gram (Sma + Global Loss N-gram SAM (Small) + Global Loss fastText

Table 1: Experimental results

fastText	glasgow	edinburgh	birmingham
N-gram SAM	lon	lond	canton
+ Global Loss	glasgow	chicago	edinburgh
fastText	influenza	pneumonia	bronchitis
N-gram SAM	litis	lam	tis
+ Global Loss	influenza	pneumonia	pneumonias

	<pre># of word-pairs</pre>
enough	65
	30
	353
	3,000
rd Similarity	2,034

	Spearman's p	Size (MB)	
0.534		٦ ٨	
	0.540	14	
	0.594	25	
	0.602		
all)	0.191	1 0	
	0.210		
)	0.494	1 つ	
	0.618	١٢	
	0.719	2230	

Table 2: Nearest Neighbors of the word "london" (upper) and "flu" (lower)