Text Classification with Negative Supervision

Sora Ohashi^{*}, Junya Takayama^{*}, Tomoyuki Kajiwara^{**}, Chenhui Chu^{**}, Yuki Arase^{*} * Graduate School of Information Science and Technology, Osaka University ** Institute of Datability Science, Osaka University

A Challenge in Text Classification

Generally, text classification models have two components:

- •An encoder: generates a vector representation (e.g. BERT_[1])
- A classifier: predicts a label for an input (e.g. Feedforward Neural Network)
- Misclassify inputs of similar meanings into the same category
 Generate similar representation of inputs that have similar meaning even if these have different labels

[1] Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL, 2019

Approach: Negative Supervision

Utilize negative examples to enable negative supervision of the encoder

Generate distinct representations for inputs of different labels

Proposed Method

Proposed Method

Discriminator

Discriminate whether two inputs have the same label or not

Representations that have different labels become dissimilar through training (Negative Supervision)

The loss function of the auxiliary task

Variations of the loss function

AAN (Auxiliary task with all negative examples)

$$L_a = \frac{1}{n} \sum_i s_i, \qquad s_i = 1 + \cos(\boldsymbol{v}_m, \boldsymbol{v}_{a_i})$$

•AM (Auxiliary task with the margin loss)

$$L_a = \max\left(0, \delta - s_k + \frac{1}{n-1} \sum_{i \neq k} s_i\right)$$

• k: the index of the positive example

• δ : The margin

• v_m , v_{a_i} : The vector representation of the main (auxiliary) task

Experiments

Datasets

Dataset	Task	Туре	# of labels
MR	Sentence polarity	Single-label	2
SST-5	Fine-grained sentence polarity	Single-label	5
TREC	Classification of question types	Single-label	6
MedWeb	Classification of disease	Multi-label	8
arXiv	Document classification of fields of papers	Multi-label	40

Models

Name	Negative Supervision	Encoder		
Baseline	None			
AAN	\checkmark	BERT _[1] , HAN _[2]		
AM	\checkmark			

[1] Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL, 2019[2] Yang et al., Hierarchical Attention Networks for Document Classification, NAACL, 2016

Results

	MR	SST-5	TREC	MedWeb (ja)	MedWeb (en)	MedWeb (zh)	arXiv
Baseline	86.5	54.0	97.0	86.1	83.1	86.9	36.0
AAN	86.8	53.0	96.9	87.1	83.6	86.4	36.4
AM	86.4	52.9	97.2	86.5	83.2	87.1	36.3

Our method improves the performance on any dataset except SST-5

Negative supervision works in most conditions

Results

	MR	SST-5	TREC	MedWeb (ja)	MedWeb (en)	MedWeb (zh)	arXiv
Baseline	86.5	54.0	97.0	86.1	83.1	86.9	36.0
AAN	86.8	53.0	96.9	87.1	83.6	86.4	36.4
AM	86.4	52.9	97.2	86.5	83.2	87.1	36.3

Our method improves the performance on any dataset except SST-5

Negative supervision works in most conditions

Conclusion

We introduced the negative supervision to prevent the model from misclassification of text that has similar meaning

Our method improves the performance on

- Both single- and multi-label classifications
- Sentence and document classifications
- Classifications in three different languages

We intend to consider semantic relations between class labels in the future